NeurIPS 2022 | 首个标注详细解释的多模态科学问答数据集,深度学习模型推理有了思维链(1)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: NeurIPS 2022 | 首个标注详细解释的多模态科学问答数据集,深度学习模型推理有了思维链


机器之心编辑部

在回答复杂的问题时,人类可以理解不同模态的信息,并形成一个完整的思维链(Chain of Thought, CoT)。深度学习模型是否可以打开「黑箱」,对其推理过程提供一个思维链呢?近日,UCLA 和艾伦人工智能研究院(AI2)提出了首个标注详细解释的多模态科学问答数据集 ScienceQA,用于测试模型的多模态推理能力。在 ScienceQA 任务中,作者提出 GPT-3 (CoT) 模型,即在 GPT-3 模型中引入基于思维链的提示学习,从而使得模型能在生成答案的同时,生成相应的推理解释。GPT-3 (CoT) 在 ScienceQA 上实现了 75.17% 的准确率;并且人类评估表明,其可以生成较高质量的解释。


像人类一样有效地学习并完成复杂的任务是人工智能追求的长远目标之一。人类在决策过程中可以遵循一个完整的思维链(CoT)推理过程,从而对给出的答案做出合理的解释。


然而,已有的机器学习模型大多依赖大量的输入 - 输出样本训练来完成具体的任务。这些黑箱模型往往直接生成最终的答案,而没有揭示具体的推理过程。


科学问答任务(Science Question Answering)可以很好地诊断人工智能模型是否具有多步推理能力和可解释性。为了回答科学问题,一个模型不仅需要理解多模态内容,还需要提取外部知识以得出正确答案。同时,一个可靠的模型还应该给出揭示其推理过程的解释。然而,目前的科学问答数据集大多缺乏对答案的详细解释,或者局限于文字模态。


因此,作者收集了全新的科学问答数据集 ScienceQA,它包含了 21,208 道来自中小学科学课程的问答多选题。一道典型的问题包含多模态的背景(context)、正确的选项、通用的背景知识(lecture)以及具体的解释(explanation)


ScienceQA 数据集的一个例子。

要回答上图所示的例子,我们首先要回忆关于力的定义:「A force is a push or a pull that ... The direction of a push is ... The direction of a pull is ... 」,然后形成一个多步的推理过程:「The baby’s hand applies a force to the cabinet door. → This force causes the door to open. → The direction of this force is toward the baby’s hand. 」,最终得到正确答案:「This force is a pull. 」。


在 ScienceQA 任务中,模型需要在预测答案的同时输出详细地解释。在本文中,作者利用大规模语言模型生成背景知识和解释,作为一种思维链(CoT)来模仿人类具有的多步推理能力


实验表明,目前的多模态问答方法在 ScienceQA 任务不能取得很好的表现。相反,通过基于思维链的提示学习,GPT-3 模型能在 ScienceQA 数据集上取得 75.17% 的准确率,同时可以生成质量较高的解释:根据人类评估,其中 65.2% 的解释相关、正确且完整。思维链也可以帮助 UnifiedQA 模型在 ScienceQA 数据集上取得 3.99% 的提升。



1、ScienceQA 数据集


数据集统计


ScienceQA 的主要统计信息如下所示。


ScienceQA 数据集的主要信息


ScienceQA 包含 21208 个例子, 其中有 9122 个不同的问题(question)。10332 道(48.7%)有视觉背景信息,10220 道(48.2%)有文本背景信息,6532 道(30.8%)有视觉 + 文本的背景信息。绝大部分问题标注有详细的解释:83.9% 的问题有背景知识标注(lecture),而 90.5% 的问题有详细的解答(explanation)。

 

ScienceQA 数据集中问题和背景分布。

数据集主题分布


不同于已有的数据集,ScienceQA 涵盖自然科学、社会科学和语言学三大学科分支,包含 26 个主题(topic)、127 个分类(category)和 379 个知识技能(skill)

 

ScienceQA 的主题分布。

数据集词云分布


如下图的词云分布所示,ScienceQA 中的问题具有丰富的语义多样性。模型需要理解不同的问题表达、场景和背景知识。


ScienceQA 的词云分布。


相关文章
|
8天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
101 59
|
3天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
20 5
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
10 1
|
5天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
5天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
16 2
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
17 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
9天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
35 6
|
6天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
20 2
|
7天前
|
机器学习/深度学习 算法
深度学习中的模型优化策略
【10月更文挑战第35天】在深度学习的海洋中,模型优化是那把能够引领我们抵达知识彼岸的桨。本文将从梯度下降法出发,逐步深入到动量、自适应学习率等高级技巧,最后通过一个实际代码案例,展示如何应用这些策略以提升模型性能。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI