首次在智能手机上训练BERT和ResNet,能耗降35%

简介: 首次在智能手机上训练BERT和ResNet,能耗降35%

研究者表示,他们将边缘训练看作一个优化问题,从而发现了在给定内存预算下实现最小能耗的最优调度。


目前,智能手机和嵌入式平台等边缘设备上已经广泛部署深度学习模型来进行推理。其中,训练仍然主要是在具有 GPU 等高通量加速器的大型云服务器上完成。集中式云训练模型需要将照片和按键等敏感数据从边缘设备传输到云端,从而牺牲了用户隐私并导致了额外的数据移动成本。

图注:推特 @Shishir Patil

因此,为了使用户在不牺牲隐私的情况下个性化他们的模型,联邦学习等基于设备的训练方法不需要将数据整合到云端,也能执行本地训练更新。这些方法已被部署在谷歌 Gboard 键盘上以个性化键盘建议,也被 iPhones 手机用来提升自动语音识别。同时,当前基于设备的训练方法不支持训练现代架构和大模型。在边缘设备上训练更大的模型不可行,主要是有限的设备内存无法存储反向传播激活。ResNet-50 的单次训练迭代所需的内存是推理的 200 多倍。

以往工作提出的策略包括分页到辅助内存和重新实现,以减少云端训练的内存占用。但是,这些方法会显著增加整体能耗。与分页方法相关的数据传输通常需要比重计算数据更多的能量。随着内存预算的缩减,重新实现会以 O(n^2 ) 的速度增加能耗。

在 UC 伯克利最近的一篇论文中,几位研究者表明分页和重新实现是高度互补的。通过对简单操作重新实现,同时将复杂操作的结果分页到闪存或 SD 卡等辅助存储器上,他们能够以最小的能耗扩展有效的内存容量。并且,通过这两种方法的结合,研究者还证明了在移动级边缘设备上训练 BERT 等模型是可能的。通过将边缘训练看作一个优化问题,他们发现了在给定内存预算下实现最小能耗的最优调度。


研究者提出了 POET(Private Optimal Energy Training),这是一种在内存受限边缘设备上对现代神经网络进行能量最优训练的算法,其架构如下图 1 所示。鉴于为反向传播缓存所有激活张量的成本极高,POET 对激活进行优化分页和重新实现,因而可以将内存消耗最高减少两倍。他们将边缘训练问题重新表述为整数线性程规划(ILP),发现可以通过求解器在 10 分钟内将其求解到最优。

图注:POET 在边缘设备上对 SOTA 机器学习模型的训练进行优化。

对于部署在真实世界边缘设备上的模型,当边缘设备出现空闲并可以计算周期时就会进行训练,例如谷歌 Gboard 会在手机充电时安排模型更新。因此,POET 也包含了严格的训练限制。给定内存限制和训练 epoch 的数量,POET 生成的解决方案也能满足给定的训练截止期限。此外,研究者还利用 POET 开发了一个全面的成本模型,并证明它在数学上是保值的(即不做近似),适用于现有的开箱即用架构。

论文一作 Shishir Patil 在演示视频中表示,POET 算法可以在智能手机等商用边缘设备上训练任何需要极大内存的 SOTA 模型。他们也成为了首个展示在智能手机和 ARM Cortex-M 设备上训练 BERT 和 ResNet 等 SOTA 机器学习模型的研究团队。

集成分页和重新实现

重新实现和分页是降低大型 SOTA ML 模型内存消耗的两种技术。在重新实现中,一旦不再需要激活张量就会被删除,最常见的是在前向传播期间。从而释放了宝贵的内存,可用于存储后续层的激活。当再次需要删除的张量时,该方法会根据谱系的规定从其他相关的激活中重新计算。而分页,也称为 offloading,是一种减少内存的补充技术。在分页中,不是立即需要的激活张量从主存储器调出到二级存储器,例如闪存或 SD 卡。当再次需要张量时,将其分页。

图 2 显示了一个八层神经网络的执行时间表。沿着 X 轴,每个单元对应神经网络的每一层(共 8 层 L8)。Y 轴表示一个 epoch 内的逻辑时间步长。图中占用的单元(用颜色填充)表示在相应的时间步执行的操作(前向 / 后向传播计算、重新实现或分页)。

例如,我们可以看到 L1 的激活是在第一个时间步 (T1) 计算的。在 T2 和 T3 时刻,分别计算 L2 和 L3 的激活量。假设层 L2 和 L3 恰好是内存密集型但计算成本较低的运算,例如非线性 (tanH、ReLU 等),那么重新实现就成为了最佳选择。我们可以删除激活({T3, L2}, {T4, L3}) 来释放内存,当后向传播过程中需要这些激活时,可以再重新实现它们({T14, L3}, {T16, L2})。

假设 L5 和 L6 层是计算密集型运算,例如卷积、密集矩阵乘法等。对于此类运算,重新实现将导致运行时间和能量的增加,并且这种方式是次优的。对于这些层,最好将激活张量分页到辅助存储({T6,L5},{T7,L6}),并在需要时分页到({T10,L6},{T11,L5 })。

分页的一个主要优点是,根据内存总线的占用情况,可以进行 pipelin 处理,以隐藏延迟。这是因为现代系统具有 DMA(直接内存访问)特性,它可以在计算引擎并行运行时将激活张量从辅助存储移动到主内存。例如,在时间步 T7,可以同时将 L6 调出并计算 L7。但是,重新实现是计算密集型的,不能并行化,这导致运行时间增加。例如,我们必须将时间步 T14 用于重新计算 L3,从而延迟其余反向传播执行。

POET
该研究提出了 POET,这是一种用于深度神经网络的图形级编译器,它重写了大型模型的训练 DAG,以适应边缘设备的内存限制,同时保持高能效。

POET 是硬件感知的,它首先跟踪前向和后向传播的执行以及相关的内存分配请求、运行时间以及每次操作的内存和能源消耗。对于给定的硬件,每个工作负载的这种细粒度分析只发生一次,具有自动化、便宜等特性,并且为 POET 提供了最准确的成本模型。POET 然后生成可以有效求解的混合整数线性规划 (MILP)。

POET 优化器搜索有效的重新实现和分页调度,以最大限度地减少受内存限制的端到端能源消耗。然后使用得到的调度生成一个新的 DAG,在边缘设备上执行。

虽然 MILP 是在商用硬件上解决的,但发送到边缘设备的调度表只有几百字节,因此内存效率很高。

对于计算成本低但内存密集型的操作,重新实现是最有效的。然而,分页最适合于计算密集型操作,在这种操作中,重新实现将导致大量的能量开销。POET 在一个集成搜索空间中共同考虑重新实现和分页。

本文方法可扩展到复杂、现实的架构中,POET 优化器算法如下。

该研究在优化问题中引入了一个新的目标函数,以最小化计算、page-in 和 page-out 的综合能耗,分页和重新实现能耗结合的新目标函数为:

其中Φ_compute、Φ_pagein 和Φ_pageout 分别表示每个节点在计算、page-in 和 page-out 时所消耗的能量。

POET 根据图的哪些节点 (k) 进行了重新实现,以及在每个时间步长 (t) 将哪些节点 page-in 或 page-out 来输出 DAG 调度。
实验结果

在对 POET 的评估中,研究者试图回答三个关键问题。首先,POET 在不同的模型和平台上能够减少多少能耗?其次,POET 如何从混合分页和重新实现策略中获益?最后,POET 如何适应不同的运行时预算?

研究者在下表 2 中列出四种不同的硬件设备,分别为 ARM Cortex M0 MKR1000、ARM Cortex M4F nrf52840、A72 Raspberry Pi 4B + 和 Nvidia Jetson TX2。POET 是完全硬件感知的,依赖于细粒度的分析。

下图 3 显示了单次训练 epoch 的能耗,每列分别对应不同的硬件平台。研究者发现,POET 在所有平台上生成节能耗最优的调度(Y 轴),同时减少峰值内存消耗(X 轴)并符合时间预算。

在下图 5 中,研究者在 A72 上训练 ResNet-18 时对 POET 和 Capuchin 进行了基准测试。随着 RAM 预算的减少,Capuchin 比具有完整内存的基线多了 73% 到 141% 的能耗。相比之下,POET 产生的能耗不到 1%。这种趋势适用于测试的所有架构和平台。

表 3 中,该研究在 Nvidia 的 Jetson TX2 上训练 ResNet-18 时对 POET 和 POFO 进行了基准测试。研究发现 POET 找到了一个集成的重新实现和分页调度,可将峰值内存消耗降低 8.3%,并将吞吐量提高 13%。这展示了 POET 的 MILP 求解器的优势,它能够在更大的搜索空间上进行优化。虽然 POFO 仅支持线性模型,但 POET 可以推广到非线性模型,如图 3 所示。

图 4 强调了 POET 在不同时间约束下采用集成策略的好处。对于每个运行时,下图绘制了总能耗图。

相关文章
|
4月前
|
机器学习/深度学习 人工智能 开发工具
如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face
Hugging Face是一个机器学习(ML)和数据科学平台和社区,帮助用户构建、部署和训练机器学习模型。它提供基础设施,用于在实时应用中演示、运行和部署人工智能(AI)。用户还可以浏览其他用户上传的模型和数据集。Hugging Face通常被称为机器学习界的GitHub,因为它让开发人员公开分享和测试他们所训练的模型。 本次分享如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face。
如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face
|
4月前
|
JavaScript
Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)
近日,Bert-vits2-v2.2如约更新,该新版本v2.2主要把Emotion 模型换用CLAP多模态模型,推理支持输入text prompt提示词和audio prompt提示语音来进行引导风格化合成,让推理音色更具情感特色,并且推出了新的预处理webuI,操作上更加亲民和接地气。
Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)
|
4月前
|
机器学习/深度学习 异构计算 Python
Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)
对于深度学习初学者来说,JupyterNoteBook的脚本运行形式显然更加友好,依托Python语言的跨平台特性,JupyterNoteBook既可以在本地线下环境运行,也可以在线上服务器上运行。GoogleColab作为免费GPU算力平台的执牛耳者,更是让JupyterNoteBook的脚本运行形式如虎添翼。 本次我们利用Bert-vits2的最终版Bert-vits2-v2.3和JupyterNoteBook的脚本来复刻生化危机6的人气角色艾达王(ada wong)。
Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)
|
4月前
|
机器学习/深度学习 异构计算 AI芯片
云端开炉,线上训练,Bert-vits2-v2.2云端线上训练和推理实践(基于GoogleColab)
对于笔者这样的穷哥们来讲,GoogleColab就是黑暗中的一道光,就算有训练时长限制,也能凑合用了,要啥自行车?要饭咱也就别嫌饭馊了,本次我们基于GoogleColab在云端训练和推理Bert-vits2-v2.2项目,复刻那黑破坏神角色莉莉丝(lilith)。
云端开炉,线上训练,Bert-vits2-v2.2云端线上训练和推理实践(基于GoogleColab)
|
19天前
|
机器学习/深度学习 人工智能 测试技术
AI计算机视觉笔记二十五:ResNet50训练部署教程
该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。
|
1月前
|
算法 异构计算
自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决
自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决
|
1月前
|
机器学习/深度学习 存储 自然语言处理
【NLP-新闻文本分类】3 Bert模型的对抗训练
详细介绍了使用BERT模型进行新闻文本分类的过程,包括数据集预处理、使用预处理数据训练BERT语料库、加载语料库和词典后用原始数据训练BERT模型,以及模型测试。
38 1
|
1月前
|
数据采集 人工智能 数据挖掘
2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别】3 Bert和Nezha方案
2021第五届“达观杯”基于大规模预训练模型的风险事件标签识别比赛中使用的NEZHA和Bert方案,包括预训练、微调、模型融合、TTA测试集数据增强以及总结和反思。
26 0
|
3月前
|
机器学习/深度学习 自然语言处理 数据可视化
BERT-IMDB电影评论情感分类实战:SwanLab可视化训练
这篇文章介绍了使用BERT模型进行IMDB电影评论情感分类的实战教程,涉及SwanLab、transformers和datasets库。作者提供了一键安装库的命令,并详细解释了每个库的作用。文章展示了如何加载BERT模型和IMDB数据集,以及如何利用SwanLab进行可视化训练。训练过程在SwanLab平台上进行,包括模型微调、指标记录和结果可视化。此外,还提供了完整代码、模型与数据集的下载链接,以及相关工具的GitHub仓库地址。
BERT-IMDB电影评论情感分类实战:SwanLab可视化训练
|
4月前
|
人工智能 语音技术
Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)
中英文混合输出是文本转语音(TTS)项目中很常见的需求场景,尤其在技术文章或者技术视频领域里,其中文文本中一定会夹杂着海量的英文单词,我们当然不希望AI口播只会念中文,Bert-vits2老版本(2.0以下版本)并不支持英文训练和推理,但更新了底模之后,V2.0以上版本支持了中英文混合推理(mix)模式。
Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)

热门文章

最新文章