每日学术速递4.2

简介: 传统上,视频理解任务由两个独立的架构建模,专门为两个不同的任务量身定制。基于序列的视频任务,如动作识别,使用视频主干直接提取时空特征,而基于帧的视频任务,如多目标跟踪 (MOT),依赖单个固定图像主干提取空间特征。相比之下,我们建议将视频理解任务统一到一种新颖的流式视频架构中,称为流式视觉转换器 (S-ViT)。 S-ViT 首先使用支持内存的时间感知空间编码器生成帧级特征,以服务于基于帧的视频任务。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理


Subjects: cs.CV


1.DiffCollage: Parallel Generation of Large Content with Diffusion Models(CVPR 2023)


c06734d9dcca1e14556fe934f6fd056e.png


标题:DiffCollage:使用扩散模型并行生成大内容

作者:Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen, Ming-Yu Liu

文章链接:https://arxiv.org/abs/2303.17076

项目代码:https://research.nvidia.com/labs/dir/diffcollage/

b994430c05818a8c491291e6b25b9431.png

5d361419548445420eac857994878755.png

5ddefdeeff7ce7d0d5a70c1471b05be1.png

8e32febe9b96f16fcf89f1f6a9a05dc4.png

摘要:

       我们提出了 DiffCollage,这是一种组合扩散模型,它可以通过利用在生成大内容片段上训练的扩散模型来生成大内容。我们的方法基于因子图表示,其中每个因子节点代表内容的一部分,变量节点代表它们的重叠。这种表示允许我们聚合来自在各个节点上定义的扩散模型的中间输出,以并行生成任意大小和形状的内容,而无需诉诸自回归生成过程。我们将 DiffCollage 应用于各种任务,包括无限图像生成、全景图像生成和长时间文本引导运动生成。与强自回归基线进行比较的大量实验结果验证了我们方法的有效性。

2.NeILF++: Inter-Reflectable Light Fields for Geometry and Material Estimation

ca49326fbc663c8c4d8dc3984e78c7b0.png

标题:NeILF++:用于几何和材料估计的相互反射光场

作者:Jiayu Jiao, Yu-Ming Tang, Kun-Yu Lin, Yipeng Gao, Jinhua Ma, YaoWei Wang, Wei-Shi Zheng

文章链接:https://arxiv.org/abs/2303.17147

项目代码:https://yoyo000.github.io/NeILF_pp/

4f1d1ac082e89cb3e802eefe46b8927f.png

cbc135e4889e0d39cf87c0bb8221082b.png

0b5c6d898394042eaabbc219e57c94c6.png

0494275cd0a1d3915a47d909fcff30cf.png

摘要:

       我们提出了一种新颖的可微分渲染框架,用于从多视图图像估计联合几何、材料和照明。与假设简化的环境地图或共置手电筒的先前方法相比,在这项工作中,我们将静态场景的照明制定为一个神经入射光场 (NeILF) 和一个出射神经辐射场 (NeRF)。所提出方法的关键见解是通过基于物理的渲染和表面之间的相互反射将入射光场和出射光场结合起来,从而可以从基于物理的图像观察中分离出场景几何、材料和照明。方式。所提出的入射光和相互反射框架可以很容易地应用于其他 NeRF 系统。我们表明,我们的方法不仅可以将出射辐射分解为入射光和表面材料,而且还可以作为表面细化模块,进一步改善神经表面的重建细节。我们在几个数据集上证明,所提出的方法能够在几何重建质量、材料估计精度和新视图渲染的保真度方面取得最先进的结果。

3.Streaming Video Model(CVPR 2023)

3688adf4b5423e1381d70737e86e4146.png

标题:流媒体视频模型

作者:Yucheng Zhao, Chong Luo, Chuanxin Tang, Dongdong Chen, Noel Codella, Zheng-Jun Zha

文章链接:https://arxiv.org/abs/2303.17228

项目代码:https://github.com/yuzhms/Streaming-Video-Model

a972cfa7d442d2a0c95d9eff1ffc27ac.png

725d299b2d024083d5458b6c8df0292d.png

摘要:

       传统上,视频理解任务由两个独立的架构建模,专门为两个不同的任务量身定制。基于序列的视频任务,如动作识别,使用视频主干直接提取时空特征,而基于帧的视频任务,如多目标跟踪 (MOT),依赖单个固定图像主干提取空间特征。相比之下,我们建议将视频理解任务统一到一种新颖的流式视频架构中,称为流式视觉转换器 (S-ViT)。 S-ViT 首先使用支持内存的时间感知空间编码器生成帧级特征,以服务于基于帧的视频任务。然后将帧特征输入到任务相关的时间解码器中,以获得基于序列的任务的时空特征。 S-ViT 的效率和功效通过基于序列的动作识别任务中最先进的准确性以及基于框架的 MOT 任务中优于传统架构的竞争优势得到证明。我们相信,流媒体视频模型的概念和 S-ViT 的实施是朝着统一的视频理解深度学习架构迈出的坚实一步。代码将在这个 https URL 上可用。

目录
相关文章
|
机器学习/深度学习 存储 自然语言处理
每日学术速递5.3
用任意语音音频生成说话人肖像是数字人和虚拟世界领域的一个关键问题。一种现代的说话人脸生成方法有望实现通用的音频-嘴唇同步、良好的视频质量和高系统效率的目标。
222 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递5.6
大型语言模型的最新进展引发了思维链中的推理,使模型能够以类似人类的方式分解问题。虽然这种范式提高了语言模型中的多步推理能力,但它受到单峰性的限制,主要应用于问答任务
138 0
|
机器学习/深度学习 自然语言处理 数据可视化
每日学术速递4.19
最近,基于端到端变压器的检测器 (DETR) 取得了显着的性能。然而,DETRs 的高计算成本问题尚未得到有效解决,限制了它们的实际应用并阻止它们充分利用无后处理的好处,例如非最大抑制 (NMS)。在本文中,我们首先分析了现代实时目标检测器中 NMS 对推理速度的影响,并建立了端到端速度基准
198 0
|
机器学习/深度学习 自然语言处理 计算机视觉
每日学术速递3.21
随着神经辐射场 (NeRFs) 的引入,新颖的视图合成最近取得了巨大飞跃。NeRF 的核心是提出每个 3D 点都可以发出辐射,从而允许使用可区分的体积渲染进行视图合成。虽然神经辐射场可以准确地表示用于计算图像渲染的 3D 场景,但 3D 网格仍然是大多数计算机图形和模拟管道支持的主要场景表示,支持实时渲染和基于物理的模拟等任务。
144 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.30
具有指令微调的大型语言模型 (LLM) 展示了卓越的生成能力。然而,这些模型是资源密集型的。为了缓解这个问题,我们探索从指令调整的 LLM 中提炼知识到更小的 LLM。为此,我们基于现有指令和新生成的指令精心开发了大量 2.58M 指令集。
136 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递4.11
最近关于从姿势图像进行 3D 重建的工作表明,使用深度神经网络直接推断场景级 3D 几何结构而无需迭代优化是可行的,显示出非凡的前景和高效率。
113 0
|
机器学习/深度学习 自然语言处理 PyTorch
每日学术速递2.17
近年来,大型深度学习 (DL) 模型的开发有所增加,这使得训练效率变得至关重要。通常的做法是在可用性和性能之间进行权衡。一方面,诸如 PyTorch 之类的 DL 框架使用动态图来以次优模型训练性能为代价为模型开发人员提供便利。
116 0
|
机器学习/深度学习 编解码 人工智能
每日学术速递5.5
我们介绍了多尺度多视图视觉变换器 (MMViT),它将多尺度特征图和多视图编码引入到变换器模型中。我们的模型对输入信号的不同视图进行编码,并构建多个通道分辨率特征阶段
179 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递3.10
本文介绍了扩散策略,这是一种通过将机器人的视觉运动策略表示为条件去噪扩散过程来生成机器人行为的新方法。我们对来自 4 个不同机器人操作基准的 11 个不同任务的扩散策略进行基准测试,发现它始终优于现有的最先进的机器人学习方法,平均提高 46.9%。扩散策略学习动作分布得分函数的梯度,并在推理过程中通过一系列随机朗之万动力学步骤针对该梯度场进行迭代优化。
157 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递3.29
由于模型容量有限,纯基于 MLP 的神经辐射场(基于 NeRF 的方法)在大型场景上经常会出现渲染模糊的欠拟合问题。最近的方法提出在地理上划分场景并采用多个子 NeRF 分别对每个区域进行建模,从而导致训练成本和子 NeRF 的数量随着场景的扩展而线性增加。
165 0

热门文章

最新文章