华人团队颠覆CV!SEEM完美分割一切爆火,一键分割「瞬息全宇宙」(2)

简介: 华人团队颠覆CV!SEEM完美分割一切爆火,一键分割「瞬息全宇宙」

分割通过对所有分割任务预先训练的一组参数,研究者可以直接评估它在通用分割数据集上的性能。SEEM实现了比较好的全景视图,实例和语义分割性能。研究人员对SEEM有四个期望目标:1. 多功能性:通过引入多功能提示引擎处理不同类型的提示,包括点、框、涂鸦、遮罩、文本和另一图像的引用区域;2. 复合性:通过学习一个联合视觉-语义空间,为视觉和文本提示组合即时查询进行推理;3. 交互性:通过整合可学习的记忆提示,通过掩码引导的交叉注意力保留对话历史信息;4. 语义感知:通过使用文本编码器对文本查询和遮罩标签进行编码,实现开放词汇表的分割。和SAM区别Meta提出的SAM模型,可以在一个统一框架prompt encoder内,指定一个点、一个边界框、一句话,一键分割出物体。SAM具有广泛的通用性,即具有了零样本迁移的能力,足以涵盖各种用例,不需要额外训练,就可以开箱即用地用于新的图像领域,无论是水下照片,还是细胞显微镜。研究者就三个分割任务(边缘检测、开放集和交互式分割)的交互和语义能力对SEEM和SAM进行了比较。在开放集分割上,同样需要高水平的语义,并且不需要交互。与SAM相比,SEEM涵盖了更广泛的交互和语义层次。SAM只支持有限的交互类型,比如点和边界框,而忽视了高语义任务,因为它本身不输出语义标签。对于SEEM,研究者点出了两个亮点:首先,SEEM有一个统一的提示编码器,将所有的视觉和语言提示编码到一个联合表示空间中。因此,SEEM可以支持更通用的用法,它有可能扩展到自定义提示。其次,SEEM在文本掩码和输出语义感知预测方面做得很好。

作者介绍


论文一作Xueyan Zou她目前是威斯康星大学麦迪逊分校的计算机科学系博士生,导师是Yong Jae Lee教授。在此之前,Zou在加州大学戴维斯分校度过了三年时光,由同一位导师指导,并与Fanyi Xiao博士密切合作。她在香港浸会大学获得了学士学位,由PC Yuen教授和褚晓文教授指导。

Jianwei Yang

Yang是Redmond微软研究院深度学习组的高级研究员,由高剑峰博士指导。Yang的研究主要集中在计算机视觉、视觉与语言和机器学习。他主要研究不同层次的结构化视觉理解,以及如何进一步利用它们通过语言和环境的体现与人类进行智能交互。在2020年3月加入微软之前,Yang在佐治亚理工学互动计算学院获得了计算机科学博士学位,他的导师是Devi Parikh教授,他还与Dhruv Batra教授密切合作。高剑峰高剑峰是微软研究院的杰出科学家和副总裁,IEEE会员,以及ACM杰出会员。目前,高剑峰领导着深度学习小组。该小组的任务是推动深度学习的最先进技术及其在自然语言和图像理解方面的应用,并在对话模型和方法方面取得进展。研究主要包括,用于自然语言理解和生成的神经语言模型、神经符号计算、视觉语言的基础和理解、对话式人工智能等等。2014年到2018年,高剑峰在微软人工智能与研究部和Redmond微软研究院的深度学习技术中心(DLTC)担任商业人工智能的合作伙伴研究经理。2006年到2014年,高剑峰在自然语言处理组担任首席研究员。Yong Jae LeeLee是威斯康星大学麦迪逊分校计算机科学系的副教授。他在2021年秋季加入威斯康星大学麦迪逊分校之前,曾在Cruise担任过一年的人工智能客座教师,在此之前,他在加州大学戴维斯分校担任了6年的助理和副教授。他还曾在卡内基梅隆大学的机器人研究所做了一年的博士后研究员。他于2012年5月在德克萨斯大学奥斯汀分校获得博士学位,师从Kristen Grauman,并于2006年5月在伊利诺伊大学厄巴纳-香槟分校获得学士学位。他还曾作为微软研究院的暑期实习生与Larry Zitnick和Michael Cohen一起工作。目前,Lee的研究集中在计算机视觉和机器学习。Lee对创建强大的视觉识别系统格外感兴趣,该系统可以在最少的人类监督下理解视觉数据。

目前,SEEM已经开放了演示demo:

https://huggingface.co/spaces/xdecoder/SEEM快上手试试吧。参考资料:

https://twitter.com/DrJimFan/status/1649835393163091969

https://www.reddit.com/r/MachineLearning/comments/12lf2l3/r_seem_segment_everything_everywhere_all_at_once/

https://t.co/U6so7iuxpv

相关文章
|
6月前
|
人工智能 自动驾驶 安全
破壁人AI百度:科技公司反内卷的典型样本
互联网整个行业都在陷入被动且尴尬的局面。去年开始流行的“内卷”一词,恰如其分的描述了互联网的现状,比如抖音开始做外卖,微信强推视频号,一直硝烟弥漫的电商市场,更是激战在社区团购上。内卷背后也有人感慨,互联网到了尽头。支撑这一论述的是,移动互联网的人口红利已经消失,几款国民型APP用户增长都固定在了10亿这个级别,只能依靠自然人口的增长和迁移。
45 0
|
人工智能 自然语言处理 自动驾驶
破壁人AI百度:科技公司反内卷的典型样本
简介:破壁人AI百度:科技公司反内卷的典型样本 。
132 0
破壁人AI百度:科技公司反内卷的典型样本
|
PyTorch 测试技术 调度
只需几个小操作,就能让transformer模型推理速度加3.5倍
只需几个小操作,就能让transformer模型推理速度加3.5倍
390 0
|
机器学习/深度学习 Java 数据挖掘
Weka简单介绍与最新详细简单安装以及环境变量配置
Weka简单介绍与最新详细简单安装以及环境变量配置
972 0
Weka简单介绍与最新详细简单安装以及环境变量配置
|
机器学习/深度学习 分布式计算 并行计算
探索UCI心脏病数据:利用R语言和h2o深度学习构建预测模型
本文的研究目的是基于UCI心脏病数据集[1],利用R语言和h2o深度学习框架构建一个预测模型,旨在准确预测个体患心脏病的风险。通过使用该模型,医疗专业人员可以更好地进行早期干预和预防措施,从而提高患者的生活质量和健康状况。
857 0
|
数据可视化 自动驾驶 计算机视觉
KITTI自动驾驶数据集的点云多种视图可视化
KITTI自动驾驶数据集的点云多种视图可视化
1209 0
KITTI自动驾驶数据集的点云多种视图可视化
|
机器学习/深度学习 人工智能 算法
纠错数据标注,只需一行代码:开源项目Cleanlab发布了2.0版本
纠错数据标注,只需一行代码:开源项目Cleanlab发布了2.0版本
210 0
|
机器学习/深度学习 算法
基于机器学习算法与历史数据预测未来的站点关闭(Matlab代码实现)
基于机器学习算法与历史数据预测未来的站点关闭(Matlab代码实现)
|
机器学习/深度学习 人工智能
一键从Prompt到PowerPoint,斯坦福博士生自制的PPT生成神器火了
一键从Prompt到PowerPoint,斯坦福博士生自制的PPT生成神器火了
383 0
|
机器学习/深度学习 算法 数据可视化
机器学习避坑指南:训练集/测试集分布一致性检查
机器学习避坑指南:训练集/测试集分布一致性检查
机器学习避坑指南:训练集/测试集分布一致性检查