跟着Nature Biotechnology学作图:R语言pca分析并使用ggplot2可视化结果

简介: 跟着Nature Biotechnology学作图:R语言pca分析并使用ggplot2可视化结果

论文

Removing unwanted variation from large-scale RNA sequencing data with PRPS

https://www.nature.com/articles/s41587-022-01440-w#data-availability

数据链接

https://zenodo.org/record/6459560#.Y2D2NHZBzid

https://zenodo.org/record/6392171#.Y2D2SXZBzid

代码链接

https://github.com/RMolania/TCGA_PanCancer_UnwantedVariation

今天推文重复的图没有出现在论文中,是论文中提供的代码里的一个图

image.png

但是没有能够重复出来论文中用到的作图数据,所以这里用R语言自带的鸢尾花数据集来演示

首先是论文中提供的两个自定义函数,一个是用来做主成分分析的pca,

.pca <- function(data, is.log) {
  if (is.log)
    data <- data
  else
    data <- log2(data + 1)
  svd <- base::svd(scale(
    x = t(data),
    center = TRUE,
    scale = FALSE
  ))
  percent <- svd$d ^ 2 / sum(svd$d ^ 2) * 100
  percent <-
    sapply(seq_along(percent),
           function(i) {
             round(percent[i], 1)
           })
  return(list(
    sing.val = svd,
    variation = percent))
}

一个是用来作图展示结果的
用到了ggplot2 ggpubr 和 cowplot 包

.scatter.density.pc <- function(
  pcs, 
  pc.var, 
  group.name, 
  group, 
  color, 
  strokeSize, 
  pointSize, 
  strokeColor,
  alpha,
  title
){
  pair.pcs <- utils::combn(ncol(pcs), 2)
  pList <- list()
  for(i in 1:ncol(pair.pcs)){
    if(i == 1){
      x <- pair.pcs[1,i]
      y <- pair.pcs[2,i]
      p <- ggplot(mapping = aes(
        x = pcs[,x], 
        y = pcs[,y], 
        fill = group)) +
        xlab(paste0('PC', x, ' (', pc.var[x], '%)')) +
        ylab(paste0('PC', y, ' (', pc.var[y], '%)')) +
        geom_point(
          aes(fill = group), 
          pch = 21, 
          color = strokeColor, 
          stroke = strokeSize, 
          size = pointSize,
          alpha = alpha) +
        scale_x_continuous(breaks = scales::pretty_breaks(n = 5)) +
        scale_y_continuous(breaks = scales::pretty_breaks(n = 5)) +
        ggtitle(title) +
        theme(
          legend.position = "right",
          panel.background = element_blank(), 
          axis.line = element_line(colour = "black", size = 1.1),
          legend.background = element_blank(),
          legend.text = element_text(size = 12),
          legend.title = element_text(size = 14),
          legend.key = element_blank(),
          axis.text.x = element_text(size = 10),
          axis.text.y = element_text(size = 10),
          axis.title.x = element_text(size = 14),
          axis.title.y = element_text(size = 14)) +
        guides(fill = guide_legend(override.aes = list(size = 4))) + 
        scale_fill_manual(name = group.name, values = color)
      
      le <- ggpubr::get_legend(p)
    }else{
      x <- pair.pcs[1,i]
      y <- pair.pcs[2,i]
      p <- ggplot(mapping = aes(
        x = pcs[,x], 
        y = pcs[,y], 
        fill = group)) +
        xlab(paste0('PC', x, ' (',pc.var[x],  '%)')) +
        ylab(paste0('PC', y, ' (',pc.var[y], '%)')) +
        geom_point(
          aes(fill = group), 
          pch = 21, 
          color = strokeColor, 
          stroke = strokeSize,
          size = pointSize,
          alpha = alpha) +
        scale_x_continuous(breaks = scales::pretty_breaks(n = 5)) +
        scale_y_continuous(breaks = scales::pretty_breaks(n = 5)) +
        theme(
          panel.background = element_blank(), 
          axis.line = element_line(colour = "black", size = 1.1),
          legend.position = "none",
          axis.text.x = element_text(size = 10),
          axis.text.y = element_text(size = 10),
          axis.title.x = element_text(size = 14),
          axis.title.y = element_text(size = 14)) +
        scale_fill_manual(values = color, name = group.name)
    }
    p <- p + theme(legend.position = "none")
    xdens <- cowplot::axis_canvas(p, axis = "x")+
      geom_density(
        mapping = aes(
          x = pcs[,x], 
          fill = group),
        alpha = 0.7, 
        size = 0.2
      ) +
      theme(legend.position = "none") +
      scale_fill_manual(values = color)
    
    ydens <- cowplot::axis_canvas(
      p, 
      axis = "y", 
      coord_flip = TRUE) +
      geom_density(
        mapping = aes(
          x = pcs[,y],
          fill = group),
        alpha = 0.7,
        size = 0.2) +
      theme(legend.position = "none") +
      scale_fill_manual(name = group.name, values = color) +
      coord_flip()
    
    p1 <- insert_xaxis_grob(
      p,
      xdens,
      grid::unit(.2, "null"),
      position = "top"
    )
    p2 <- insert_yaxis_grob(
      p1,
      ydens,
      grid::unit(.2, "null"),
      position = "right"
    )
    pList[[i]] <- ggdraw(p2)
  }
  pList[[i+1]] <- le
  return(pList)
}

这两个自定义函数在函数名前都加了一个点,暂时不知道加这个点和不加有什么区别,将这两个函数放到一个文件里

source("pca_and_ggplot2.R")

library(ggplot2)
library(ggpubr)
library(cowplot)

pca.ncg<-.pca(data = iris[,1:4],
              is.log = FALSE)
.scatter.density.pc(pcs = pca.ncg$sing.val$v[, 1:3],
                    pc.var = pca.ncg$variation,
                    strokeColor = 'gray30',
                    strokeSize = .2,
                    pointSize = 2,
                    alpha = .6,
                    title = "A",
                    group.name = "B",
                    group=iris$Species,
                    color=c("red","blue","green")) -> p

do.call(
  gridExtra::grid.arrange,
  c(p,ncol=4))

image.png

这里自定义的pca结果可视化函数参数还挺多的,这里就不逐个介绍了,争取抽时间录制成视频介绍,敬请期待

示例数据和代码可以给推文点赞 点击在看 最后留言获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!
相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
3月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
3月前
|
数据可视化
R语言自定义图形:ggplot2中的主题与标签设置
【8月更文挑战第30天】`ggplot2`作为R语言中功能强大的绘图包,其自定义能力让数据可视化变得更加灵活和多样。通过合理使用`theme()`函数和`labs()`函数,以及`geom_text()`和`geom_label()`等几何对象,我们可以轻松创建出既美观又富有表达力的图形。希望本文的介绍能够帮助你更好地掌握`ggplot2`中的主题与标签设置技巧。
|
19天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。

热门文章

最新文章