田渊栋团队发布「长故事生成器」第二版DOC:连贯性大幅提升,趣味性提升20.7%!

简介: 田渊栋团队发布「长故事生成器」第二版DOC:连贯性大幅提升,趣味性提升20.7%!




 新智元报道  

编辑:LRS

【新智元导读】首发长故事生成器Re3两个月后,田渊栋团队再次更新第二版DOC,连贯性、一致性再次大幅提升!

新智元

,赞47

前段时间田渊栋博士团队在EMNLP2022上发布了一个基于大规模语言模型的故事生成器Re3(Recursive Reprompting and Revision)框架,通过设计prompt让模型生成一致性强的故事,完全不需要微调大模型,最长可以生成7500词的故事。

 

最近Re3的作者团队又发布了第二版长故事生成框架DOC(Detailed Outline Control),使用层次化的大纲(outline)对故事进行更细节的描绘,并使用微调后的OPT-350m模型对生成的内容进行更连贯的续写,相比之下,人类评估后认为DOC比上一代Re3的写作能力更强。

 

论文链接:https://arxiv.org/abs/2212.10077

论文链接:https://github.com/yangkevin2/doc-story-generation

 

DOC由两个互补的组件组成:

 

1. 详细大纲生成器(detailed outliner)可以创建一个更详细的、分层结构的大纲,将创造性的工作从主起草(drafting)过程转移到规(planning)划阶段;

 

2. 详细的控制器(detailed controller)通过控制故事段落与大纲细节保持一致,确保更详细的大纲在生成过程中仍然能够发挥作用。

 

在自动生成故事的人类评估中,DOC 在情节一致性上取得22.5%的绝对增益,大纲相关性提升28.2%,趣味性提升20.7%,大大优于先前的 Re3基线模型,并且人类评估者还认为DOC在交互式生成环境中更容易控制。

 

文章的第一作者Kevin Yang是加州大学伯克利分校的四年级博士生,主要研究兴趣为结构化设置下的可控自然语言文本生成,如利用可控生成的结构化方法来改善长篇文本的一致性。

 

 

第二作者田渊栋博士是Meta人工智能研究院研究员、高级经理,其研究方向为深度增强学习及其在游戏中的应用,以及深度学习模型的理论分析。先后于2005年及2008年获得上海交通大学本硕学位,2013年获得美国卡耐基梅隆大学机器人研究所博士学位。

 

 

DOC框架

 

随着自然语言技术的不断发展,大规模语言模型对于短文本的理解逐渐接近瓶颈,人们对生成更长的文本逐渐产生兴趣,比如一次生成数千个单词。

 

与短文本生成任务相比,长文本包含的内容和限制也更多,模型需要保持总体一致性,长期事实一致性,还要保持与用户输出的前提或计划保持相关性。

 

与人类相比,像Re3这样的故事生成系统在许多方面仍然存在不足,例如无法保证长距离下的剧情连贯性,全局不一致,故事内容偏离设定的计划等。

 

为了弥补这一差距,详细大纲控制(DOC)框架在重复使用Re3的高层次规划起草修订(panning-drafting-revision)结构的同时,通过两种互补的方法提高了长期一致性。

 

 

详细大纲

 

首先,detailed outliner将一个简短的初始大纲细化为一个更详细、层次化的大纲,这样设计的原因是人类作者可能在起草一份长文档之前迭代地细化和扩展一个简短的初始大纲。

 

与即兴创作新的情节点相比,作者可能会在高层次大纲阶段计划一个连贯的总体情节,使用扩展的大纲在起草过程中提供更详细的指导。

 

 

在起草阶段,研究人员重用了Re3重写阶段的大纲相关性和文本连贯性重排序,以检测当前大纲项目何时完成了一段文章,并基于分数阈值实现提前停止。

 

大纲中有完整的设置和相关的角色,每个大纲项目都经过仔细筛选,以确保上下文中的相关性和连贯性。

 

在结构化prompt中,模型会突出显示当前设置、设置中的更改,还会根据大纲中检测到的角色检索角色描述。

 

 

相比之下,Re3在起草过程中为每一段动态选择相关角色,并且不跟踪设置信息,这可能会导致故事设置发生意外变化

 

详细控制器

 

第二个组件详细控制器(detailed controller)通过基于相应的大纲项目控制段落生成来保持对详细大纲的忠实性。

 

因为详细大纲强加了许多重叠的软约束,所以详细控制器必须施加足够的控制强度,同时详细控制器还必须适应灵活的自然语言输入,并在使用最先进的大型语言模型生成时具有计算效率。

 

所以研究人员将详细控制器实现为基于OPT350m的控制器,设计了一个对比训练程序,将摘要与段落前缀对齐。

 

 

最关键的是,研究人员还构建了许多流畅的硬负例(fluent hard negatives),以促进生成的段落不仅在开始时与主题相关,而且贯穿始终。

 

实验部分

 

在实验中,模型的输入只是一个简短的英语前提(premise),通常30-60个单词,输出是一个完整的故事。

 

研究人员没有施加更多规则上的约束,因为「故事」的定义还不明确,更不用说定义「好故事」了,质量好坏主要依赖人工评估指标。

 

在评价上主要使用三个指标,更适用于比较段落而非完整的故事:

 

1. 连贯性,人类标注员判断情节连贯的段落百分比;

 

2. 相关性,被判断为符合相应大纲条目的段落百分比;

 

3. 趣味性,被认为有趣的段落百分比。

 

对比的基线模型包括Re3, ROLLING-OPT和ROLLING-GPT。

 

 

在实验结果可以看到,与Re3相比,标注人员认为DOC生成的情节更加连贯,与大纲更加相关,相比ROLLING基线提升更高。

 

并且结果证实了模型设计的正确性,即剧情连贯性和大纲相关性得益于将创意工作从规划转向起草,以及改进的控制机制。

 

而且令人意外的是,标注人员还认为DOC的段落明显更有趣,研究人员认为这是更详细(更具事件性)大纲带来的进步,进一步的消融实验也支持了这一假设。

 

不过定性分析也揭示了该模型仍然有进一步改进的巨大空间。

 

与RE3不同的是,DOC通常不会严重偏离顶层大纲,而RE3有时几乎完全偏离主题,但DOC通常无法遵循详细大纲的较低层次部分。

 

DOC和RE3中的内部一致性仍然存在问题,详细大纲中偶尔出现的错误可能会造成特别大的负面影响,从而在起草过程中导致更大的级联错误。

 

此外,DOC中的大纲往往在细节层次上不一致,有些过于模糊,而另一些似乎过于展开(over-expanded)。

 

 

此外,模型检测到的设置和角色有时也会不正确或不完整,下面的例子显示了DOC根据上述大纲编写的一篇删节严重的故事。

 

参考资料:https://arxiv.org/abs/2212.10077

相关文章
|
5月前
|
测试技术
LLM数学性能暴涨168%,微软14人团队力作!合成数据2.0秘诀曝光,智能体生成教学
【9月更文挑战第14天】微软研究团队发布了一篇介绍新型框架"AgentInstruct"的论文,该框架旨在通过自动生成高质量合成数据,推动语言模型发展。AgentInstruct仅需原始数据源即可创建多样化的合成数据,减少人工工作量。研究团队基于此框架构建了含2500万训练对的数据集,展示了其在多种技能教学中的潜力。经微调后的Mistral-7b模型演进为Orca-3,在多个基准测试中显著超越同类模型。尽管如此,AgentInstruct仍面临创建流程耗时及合成数据复杂性不足等问题。论文详情见:https://arxiv.org/pdf/2407.03502
112 2
|
6月前
|
SQL IDE JavaScript
"揭秘高效代码Review秘籍:如何像侦探一样挖掘隐藏错误,提升团队编程实力,你不可错过的实战指南!"
【8月更文挑战第20天】代码Review是软件开发中提升代码质量与团队协作的关键环节。本文详细介绍高效代码Review流程:从明确范围与标准开始,到逐行审查与工具辅助,再到积极沟通与闭环管理,辅以示例确保清晰易懂。通过实践这些步骤,不仅能减少错误,还能促进知识共享,为构建高质量软件打下坚实基础。
106 2
|
7月前
|
数据可视化 安全 数据安全/隐私保护
NewspaceGPT的故事续写能力太强了
NewspaceGPT的故事续写能力太强了
63 0
|
机器学习/深度学习 数据采集 人工智能
国内“谁”能实现chatgpt,短期穷出的类ChatGPT简评(算法侧角度为主),以及对MOSS、ChatYuan给出简评,一文带你深入了解宏观技术路线。
国内“谁”能实现chatgpt,短期穷出的类ChatGPT简评(算法侧角度为主),以及对MOSS、ChatYuan给出简评,一文带你深入了解宏观技术路线。
国内“谁”能实现chatgpt,短期穷出的类ChatGPT简评(算法侧角度为主),以及对MOSS、ChatYuan给出简评,一文带你深入了解宏观技术路线。
|
SQL 存储 数据可视化
|
机器学习/深度学习 数据采集 人工智能
不用调参,不用改模型!CLUE社区发布国内首个Data-centric竞赛,白给数据分析服务
模型为中心的竞赛见得太多了,最近国内上新了一个中文NLP竞赛DataCLUE。与以往不同的是,它是以数据为中心的竞赛!不用调参,不用改模型,只需要修改输入数据即可,还有能白嫖的数据分析服务。
543 0
不用调参,不用改模型!CLUE社区发布国内首个Data-centric竞赛,白给数据分析服务
浮游植物初级生产力与丰富度关系研究获进展
中国科学院南京地理与湖泊研究所研究人员张民等,通过对长江流域71个湖泊采样分析,详细阐述了浮游植物初级生产力增加过程中,浮游植物群落结构和丰富度的变化过程,并对不同变化阶段的驱动因子进行了定量分析。
1632 0
|
决策智能
复杂性思维中文第二版 十二、合作进化
十二、合作进化 原文:Chapter 12 Evolution of cooperation 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 在最后一章中,我们提出两个问题,一个来自生物学,一个来自哲学: 在生物学中,“利他主义问题”是自然选择与利他主义之间的明显冲突,自然选择表明动物生存在不断竞争的状态中来生存和繁殖,利他主义是许多动物帮助其他动物的倾向,甚至是显然对他们不利。
1097 0
|
机器学习/深度学习 人工智能 算法
【吴恩达推荐】40岁开始学习,4周编写第一个AI算法的经验谈
本文是一个40多岁、完全没有编程经验的人学习机器学习的经验谈。作者把编程视为学习一门新的外语,而学会深度学习这门语言就可以和未来对话:你不需要先成为一个编程专家或数学奇才再来学习编程,你只需要愿意学习,并且能够很好地使用 Python 和 Numpy。
1770 0