跟着Nature Communications学作图:R语言ggplot2堆积柱形图组合哑铃图

简介: 跟着Nature Communications学作图:R语言ggplot2堆积柱形图组合哑铃图

论文

A latitudinal gradient of deep-sea invasions for marine fishes

https://www.nature.com/articles/s41467-023-36501-4

s41467-023-36501-4.pdf

论文中对应的图实现的代码都有,链接是

https://github.com/stfriedman/Depth-transitions-paper

今天的推文我们重复一下论文中的figure1A,其中一个堆积柱形图和一个哑铃图,哑铃图就是点和线段的组合

首先是右侧哑铃图

部分示例数据截图

image.png

有一些分组数据论文中没有提供,这部分数据我就随便构造了,最终的出图不会和论文中完全一致

加载用到的R包

library(readxl)
library(tidyverse)
library(wesanderson)

读取数据

fig1_data<-read_excel("data/20230302/41467_2023_36501_MOESM7_ESM.xlsx")

fig1_data %>% dim()

给数据集添加两列分组

fig1_data %>% 
  mutate(cat=sample(c("small","norm","big"),46,replace = TRUE),
         col=sample(c("Above expectation",
                      "Within expectation",
                      "Below expctation"),
                    46,replace = TRUE)) -> fig1_data

作图代码

ggplot(fig1_data, aes(x = family, y = trans_num)) +
  geom_segment(aes(x = family, xend = family, y = sim_0.05, yend = sim_0.95),
               col = "grey90", lwd = 3, lineend = "round"
  ) +
  geom_segment(aes(x = family, xend = family, y = sim_median, yend = trans_num),
               col = "grey50", lwd = 0.6
  ) +
  geom_point(aes(x = family, y = sim_median),
             pch = 21,
             fill = "white", col = "grey50", size = 3, stroke = 1
  ) +
  geom_point(size = 3.3,aes(color=col)) +
  theme_classic() +
  theme(
    axis.text.y = element_blank(),
    plot.margin = unit(c(0, 0.4, 0, 0), "cm"),
    panel.grid.major.x = element_blank(),
    panel.border = element_blank(),
    panel.grid.major.y = element_line(size = 0.4),
    axis.line.x = element_line(size = 0.2),
    axis.line.y = element_blank(),
    axis.ticks.x = element_line(size = 0.1),
    axis.ticks.y = element_blank(),
    legend.position = c(0.8,0.1),
    legend.background = element_rect(color="black",fill="transparent"),
    legend.title = element_blank(),
    axis.title = element_text(size = 12),
    axis.title.y = element_blank()
  ) +
  coord_flip() +
  ylab("Number of Transitions") +
  labs(col = "Speciation Rate") +
  scale_color_manual(values = c(
    wes_palette("Darjeeling1")[2], "grey40",
    wes_palette("Darjeeling1")[3]
  )) -> p1
p1

image.png

堆积柱形图

这个数据论文中没有提供,这里我们随便构造数据

df1<-data.frame(x=rep(fig1_data$family,3),
                y1=c(rep(c("Shallow","Deep","Intermediate"),each=46)),
                y2=sample(1:100,46*3,replace = TRUE))
df1 %>% head()

准备颜色

depth_cols <- setNames(
  c("powderblue", "#2C8EB5", "#16465B"),
  c("Shallow", "Intermediate", "Deep")
)

作图代码

ggplot(data=df1,
       aes(y = y2, x = x)) +
  geom_bar(position = "fill", stat = "identity", width = 0.7,
           aes(fill=y1)) +
  coord_flip() +
  theme_classic() +
  theme(
    #axis.text.y = element_text(colour = famcol),
    axis.text.x = element_blank(),
    axis.ticks = element_blank(),
    axis.line = element_blank(),
    legend.position = "bottom",
    legend.justification = c(0,0),
    legend.key.size = unit(2,'mm'),
    legend.title = element_blank(),
    legend.background = element_rect(color="black",fill="transparent")
  ) +
  xlab("") +
  ylab("") +
  guides(fill=guide_legend(ncol = 2))+
  scale_fill_manual(values = depth_cols) -> p2

p2

image.png

最后是拼图

library(patchwork)

p2+p1+
  plot_layout(widths = c(1,5))

image.png

示例数据和代码可以给推文点赞,然后点击在看,最后留言获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

微信公众号好像又有改动,如果没有将这个公众号设为星标的话,会经常错过公众号的推文,个人建议将 小明的数据分析笔记本 公众号添加星标,添加方法是

点开公众号的页面,右上角有三个点

image.png

点击三个点,会跳出界面

image.png

直接点击 设为星标 就可以了

image.png

相关文章
|
数据可视化 数据挖掘 Python
跟着Oncogene学作图:R语言gggenomes画桑基图
跟着Oncogene学作图:R语言gggenomes画桑基图
|
数据可视化 数据挖掘 Python
跟着NatureCommunications学作图:R语言ggtree根据分组给进化树上色
跟着NatureCommunications学作图:R语言ggtree根据分组给进化树上色
|
数据可视化 数据挖掘 Python
跟着NatureMetabolism学作图:R语言ggplot2转录组差异表达火山图
跟着NatureMetabolism学作图:R语言ggplot2转录组差异表达火山图
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
4月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
81 3
|
9月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
9月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
5月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
6月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。