秒杀AlphaFold!Science:用AI一秒设计自然界全新蛋白质(1)

简介: 秒杀AlphaFold!Science:用AI一秒设计自然界全新蛋白质

【新智元导读】利用AI,我们现在可以在几秒之内设计出自然界中全新的蛋白质了。最近,来自华盛顿大学的科学家在Science上连发两篇论文,介绍了ProteinMPNN算法工具。


过去两年,机器学习彻底改变了蛋白质结构预测。

而现在,人工智能又在蛋白质设计领域引发了新一轮革命。

生物学家发现,使用机器学习,可以在几秒钟内创建出蛋白质分子。而在以前,这个时间也许是几个月。

并且,新方法准确率也更高。

9月15日,华盛顿大学医学院的生物学家在Science上连发两篇论文,介绍了他们的重大发现。

论文地址:https://www.science.org/doi/10.1126/science.add2187

也许你会问:创造出自然界中没有的蛋白质,对我们有什么意义?

意义可太大了。通过这些蛋白质,也许我们会开发出更多疫苗,加快治疗癌症的研究,研发出碳捕获工具,和全新的可持续生物材料。

论文地址:https://www.science.org/doi/10.1126/science.add1964

ProteinMPNN:蛋白质设计的革命

这几年,已经有几十种人工智能蛋白质设计工具被开发了出来,研究人员可以混合和匹配各种方法来得出一个可行的最终设计。

下面,我们就简单介绍一下其中的4种方法:

固定骨架设计

给定一个预设蛋白质结构,然后用Al确定该蛋白质的氨基酸序列。

序列生成

利用语言模型,让AI学会如何生成蛋白质。然后通过微调这些神经网络,得到特定蛋白质家族成员的新序列。

结构生成

对蛋白质结构进行训练的神经网络可以生成完全新颖的蛋白质结构,但往往对输出的控制有限。

序列和结构设计

使用一种叫做inpainting的方法,研究人员输入他们希望包含在蛋白质中的结构或序列,而Al网络则填补其余部分。

在这两篇新论文中,华盛顿大学医学院的生物学家表示,机器学习可用于比以前更准确、更快速地创建蛋白质分子。

David Baker是华盛顿大学医学院生物化学教授、2021年生命科学突破奖获得者。

据他介绍:「蛋白质是整个生物学的基础,但是要知道,现在我们在每种植物、动物和微生物中发现的所有蛋白质,都还不到所有可能的蛋白质的百分之一。有了这些新的软件工具,研究人员也许就能够找到长期的解决方案,去攻克医学、能源和技术上的难题。」

在自然界中,蛋白质被称为「生命的基石」,因为它们在所有生物的结构中都是必不可少的。在一个细胞生长、分裂、修复的每一个过程中,几乎都有蛋白质的参与。

可以说,蛋白质基本解决了生命的所有问题,生物学中的一切都发生在蛋白质上。

Baker介绍说:「为了解决生物体在进化过程中面临的问题,它们在进化中不断演变。人类今天在面临着新的问题,比如新冠病毒。如果我们能设计出一种新的蛋白质,让它像在进化过程中演变出的蛋白质一样,解决种种问题,那它的力量将是非常强大的。」

在生物的数百万年进化中,蛋白质的演化痕迹使科学家能够快速破译数百种蛋白质的3D形状

蛋白质由数十万个氨基酸组成,这些氨基酸以长链的形式连接起来。蛋白质中的氨基酸序列决定了它的三维形状。这种复杂的形状对于蛋白质的功能至关重要。

在2020年,人工智能实验室DeepMind宣布AlphaFold时,就已经让全世界大吃一惊了。这个AI工具利用深度学习,解决了生物学的一个大挑战:准确预测蛋白质的形状。而今年夏天,DeepMind宣布,AlphaFold现在可以预测科学上已知的所有蛋白质的形状。

通过预测蛋白质的结构,就可以洞察它们的表现。

在蛋白质预测领域,科学家已经取得了举世瞩目的惊人成绩。而在蛋白质设计领域, Baker的团队也取得了突破性进展。





相关文章
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
【通义】AI视界|AI的胜利!蛋白质结构预测获诺贝尔化学奖
本文介绍了最新的人工智能动态,包括OpenAI计划在新加坡设立新办事处以加速亚太布局、蛋白质结构预测获得诺贝尔化学奖、OpenAI请求法院驳回马斯克的诉讼、Meta的人工智能聊天机器人将在21个新地区推出,以及亚马逊推出的“视觉辅助包裹检索”技术。这些进展展示了人工智能领域的快速发展及其在各行业的广泛应用。点击[通义官网]了解更多功能。
|
2月前
|
机器学习/深度学习 人工智能
AI模型提早5年预警乳腺癌,MIT研究登Science获LeCun转发
【9月更文挑战第1天】麻省理工学院(MIT)研究人员开发的深度学习AI模型,在乳腺癌早期预警方面取得突破性进展,相比传统方法提前5年预警癌症,准确率超过90%。此成果不仅在医学界引起轰动,还获得了人工智能领域知名学者Yann LeCun的高度评价。尽管面临准确性和可解释性的挑战,但该研究展示了AI在医疗领域的巨大潜力,有望革新乳腺癌的早期筛查和诊断方式。论文详情见[链接]。
54 3
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
清华首款AI光芯片登上Science,全球首创架构迈向AGI
【4月更文挑战第16天】清华大学研究团队开发出大规模光子芯片“太极”,在《科学》杂志发表,该芯片基于创新的光子计算架构,实现百万神经元级别的ONN,能效比高达160 TOPS/W。实验中,太极芯片成功执行1000类别分类任务,提升AI内容生成质量,为AGI发展开辟新路径。然而,光子集成电路的制造成本高、技术成熟度不足及软件支持限制了其广泛应用。
162 5
清华首款AI光芯片登上Science,全球首创架构迈向AGI
|
6月前
|
机器学习/深度学习 人工智能
辉瑞 AI 方法登 Science,揭示数以万计的配体-蛋白质相互作用
【5月更文挑战第15天】辉瑞研究人员在《Science》发表论文,利用深度学习模型PLIN预测和分析数以万计的蛋白质-配体相互作用,有望加速药物研发,提高药物效果和安全性。实验显示模型在1000多对数据上表现良好,但对复杂相互作用和泛化能力仍有待改进。[链接](https://www.science.org/doi/10.1126/science.adk5864)
51 3
|
6月前
|
机器学习/深度学习 人工智能 Java
【AI for Science】量子化学:分子属性预测-第2次打卡-特征工程baseline上分
【AI for Science】量子化学:分子属性预测-第2次打卡-特征工程baseline上分
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
28 1
|
6天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
35 10
|
7天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。

热门文章

最新文章