AI不适合开源?MongoDB副总裁:开源代码对人工智能不适用

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: AI不适合开源?MongoDB副总裁:开源代码对人工智能不适用

【新智元导读】在没有人可以复制的规模下运行的开源代码有什么意义?


是时候聊聊AI开源的问题了。


显然,这是搞开发的人不得不面对的问题。基本从2006年开始,开不开源就已经成为了头等问题之一。


Matt Asay在MongoDB负责市场营销这一块。在此之前,他曾是亚马逊网络服务的负责人和Adobe的开发者生态系统负责人。


而在加入Adobe之前,Asay在开源公司担任过一系列职务。MongoDB的业务发展、营销和社区副总裁、实时分析公司Nodeable(后来被Appcelerator收购)的业务发展副总裁、移动HTML5初创公司Strobe(后来被Facebook收购)的业务发展副总裁和临时CEO,以及Ubuntu Linux公司Canonical的COO和内容管理初创公司Alfresco的美洲区负责人。


最终,Asay成为了开放源码倡议(OSI)的荣誉董事,并获得了斯坦福大学的法学博士学位。



之前,Matt Asay曾指责谷歌和雅虎两家公司在开源代码上有所保留,然后他被骂了。


现在想来,是有道理的。


Tim O'Reilly表示,在开源的云时代,开发者分享代码的动机,是让别人跑自己的程序,从而提供一份源代码。而这件事的必要性已经慢慢消失了。



Reilly继续指出,不仅没必要,而且就最大的App来看,这也不再可能了。


在过去的十年里,这种分享的不可能推翻了原先开源的定义。如今,新的定义正在影响我们思考人工智能的方式。


正像Mike Loukides指出的那样,在AI方面的合作从未像现在这么重要,也从未像现在这么困难。



就像2006年的云计算一样,在人工智能领域做最有趣的工作的公司可能会努力用传统的方式开源。


但即便他们开源的方式是传统的,也并不意味着他们不能用更有意义的方式开放。


开放基础设施


Loukides认为:「虽然现在很多公司都说自己在搞AI,但真正推动这个行业向前发展的只有三家公司——Meta、OpenAI和谷歌。」


他们仨有着一个共同点:都拥有可以大规模运行大型模型的能力。这种能力背后,需要强大的基础设施和技术手段,而这往往是很多个人和企业不具备的。


的确,你可以从Meta那里下载OPT-175B的源代码,但你手头的硬件却无法对其进行训练。甚至是对于大学或其他的研究机构来说,OPT-175B都过于庞大了。



另一方面,即便是有足够计算资源的谷歌和OpenAI,也无法轻易复刻OPT-175B。


原因也很简单:OPT-175B与Meta自己的基础设施(包括定制硬件)联系过于紧密,很难被移植到其他地方。


也就是说,Meta并没有想要隐瞒有关OPT-175B的什么,而是建造一个差不多基础设施真的很难。即便是对于那些有资金和技术的人来说,最终搞出来的也会是个不大一样的版本。


而这正是雅虎的Jeremy Zawodny和谷歌的Chris DiBona在2006年的OSCON上提出的观点。


但话又说回来,如果你不了解机器内部的科学原理,就很难去相信一个AI。


所以,我们需要去寻找某种方法,从而让基础设施能被开放使用。


Loukides认为,应该向外部研究人员和早期使用者提供免费访问。不过,并不是说给他们一个可以访问Meta,谷歌或OpenAI的数据中心的万能钥匙,而是通过一个公共API。


这可能并不是大多数人所期待的「开源」,但其实还是可以接受的。


换一种方式看待开源


现在,Matt Asay曾经对谷歌和雅虎指责如今没什么意义了。


自从2006年以来,谷歌在满足战略需要的前提下,打包并开源了关键基础设施。


在Matt Asay看来,TensorFlow 是开源的入口,Kubernetes是开源的出口。这些开源的机器学习行业标准有望提升Google Cloud的工作负载,或者确保谷歌云之间的可移植性,从而为Google Cloud赢得更多的工作负载。


想出这些的人很聪明,但是在Pollyanna 的意义上,它并不是开源的。


不是只有谷歌这样。它只是在开源上做得比其他公司好。开源本质上是自私的,公司和个人总是会开放有利于自己或客户的代码。


一直如此,而且永远如此。


Loukides认为应该有意义地开放AI(尽管三大AI巨头与其他公司之间存在差异),但他指的开源并不是我们一般意义上理解的开源。为什么呢?


原因在于,虽然传统的开源很不错,但无论是对于软件的创建者和消费者,它都从未成功解决DiBona和Zawodny于2006年在OSCON上提出的云开源难题。


现在已经过去了十几年了,我们依然没有离答案更近一步。


话又说回来,我们确实近了一点。


Matt Asay认为,我们需要以一种新的方式来看待开源。



他与Loukides的想法很接近:关键在于为研究人员提供足够的访问权限,使他们能够重现一个特定的AI模型是如何成功或失败的。


「他们并不需要完全访问所有的代码和基础设施来运行这些模型」。正如他所言,只有在开发人员可以在笔记本电脑上运行开源程序、进行衍生创作的前提下,完全访问该代码才是有意义的。



鉴于如今谷歌或微软运行代码的规模和独特的复杂性,这已经毫无意义了——我们不可能完全访问大规模的云代码。


我们需要明白:开源并不是用于观察开源世界的一个镜头。而且考虑到我们如今所处的云时代,开源也用得越来越少。


无论是作为公司还是作为个人,我们的目标应该是以有利于客户和第三方开发人员的方式开放对软件的访问,让软件更易理解,而不是试图将几十年前的开源概念改造成云。它不适用于开源,就像它不适用于AI一样。


是时候换个思路了。


参考资料:https://www.infoworld.com/article/3667433/open-source-isnt-working-for-ai.html

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
6月前
|
人工智能 NoSQL MongoDB
MongoDB洞察:2024年人工智能(AI)值得关注的五大趋势
在AI日益成为焦点的同时,我们必须牢记人类学识依然不可或缺
1727 2
MongoDB洞察:2024年人工智能(AI)值得关注的五大趋势
|
6月前
|
人工智能 NoSQL atlas
加入MongoDB AI创新者计划,为您的AI初创企业获取额外支持!
MongoDB推出AI创新者计划,针对AI初创企业和各规模企业,提供专属福利和Atlas云数据库额外额度。AI初创者计划适合早期企业,包括联合营销机会和专业服务支持,优秀项目有望成为MongoDB Ventures。AI强化计划则针对不同企业,由MongoDB专家评估项目潜力,提供一对一技术指导、免费Atlas使用额度和在MongoDB生态中曝光的机会。符合条件的A轮或更早阶段的初创公司可申请,现有MongoDB for Startups成员也可加入并获取更多Atlas资源。扫描二维码即可申请,开启AI创新之旅。
3513 0
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
ElasticON AI 2023大会回顾:深入探索 Elasticsearch 与人工智能的融合之路
ElasticON AI 2023大会回顾:深入探索 Elasticsearch 与人工智能的融合之路
87 0
|
人工智能 自然语言处理 数据挖掘
免费获得AI的力量:探索顶级AI工具的免费替代品
免费获得AI的力量:探索顶级AI工具的免费替代品
208 0
免费获得AI的力量:探索顶级AI工具的免费替代品
|
人工智能 数据可视化 物联网
vivo AI全球研究院 BlueLM-7B系列开源!魔搭社区最佳实践教程来了!
BlueLM 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型,本次发布包含 7B 基础模型、7B 对话模型,4bits量化的7B对话模型,支持 32K 的长文本基础模型和对话模型。
|
人工智能 NoSQL 安全
MongoDB推出“AI创新者计划”,帮助企业利用生成式AI实现创新
全新的“MongoDB AI创新者计划”将有助于企业快速获取相关技术,构建合作伙伴关系,利用MongoDB平台加速产品走向市场
MongoDB推出“AI创新者计划”,帮助企业利用生成式AI实现创新
|
人工智能 移动开发 Kubernetes
AI不适合开源?MongoDB副总裁:开源代码对人工智能不适用
AI不适合开源?MongoDB副总裁:开源代码对人工智能不适用
139 0
|
机器学习/深度学习 存储 人工智能
「开源人说」|AI普惠,阿里灵杰开源历程与思考
施兴 阿里巴巴资深技术专家 阿里巴巴开源项目EasyRec负责人
118156 1
「开源人说」|AI普惠,阿里灵杰开源历程与思考
|
NoSQL 搜索推荐 数据管理
MongoDB University推出全新课程,助推开发者生态系统发展,提升开发者技术能力
让所有人都能随时随地、以任意方式进行学习,提升全民数据技能
MongoDB University推出全新课程,助推开发者生态系统发展,提升开发者技术能力
|
机器学习/深度学习 人工智能 自然语言处理
进击的 AI 框架,MindSpore 开源一周年
开源一年以来,累计发布 8 个新版本,汇聚超过 3000 名社区开发者的代码贡献,社区访问量超千万;现拥有超过 100 个大的基础模型,涵盖计算机视觉、NLP 等主流的 AI 和深度学习框架;累计 PR 数 超过 2 万个,下载量高达 22 万次,下载用户遍布全球;超过 100 所高校参与了社区活动,超过 40 家科研机构利用它去发表原创论文。这就是全场景 AI 计算框架 MindSpore 开源一年来取得的成绩!
297 0
进击的 AI 框架,MindSpore 开源一周年