Science:深度学习建模,AI巧手设计特定蛋白质

简介: Science:深度学习建模,AI巧手设计特定蛋白质



 新智元报道  

编辑:Joey 如願

【新智元导读】蛋白质设计最近风头正盛,这不又来了新作品,华盛顿大学的研究人员开发了两种深度学习算法可预设计特定功能的蛋白质。


蛋白质是构成生命的基石,而如何快速、准确地确定蛋白质的三维空间结构,在生命科学领域一直是个难题。

 

复杂的蛋白质结构 图源:science


而现在研究人员利用全蛋白质组氨基酸协同进化分析和基于深度学习的结构建模,可完成对蛋白质结构的系统性预测。

 

 

随后,来自华盛顿大学生物化学系的Jue Wang等人提出了两种深度学习方法来设计「预设定功能位点的蛋白质」,并将其成果发表在Science上。

 

论文链接:https://www.science.org/doi/10.1126/science.abn2100

 

首先,他们发现了可折叠成包含功能位点的蛋白质序列。

 

然后,他们重新训练了一个结构预测网络,从而在只确定功能位点的情况下恢复蛋白质的序列和完整结构。

 

第一种方法叫Constrained hallucination,通过在序列空间中进行梯度下降以优化损失函数,并辅以特定问题的交互项,以设计候选免疫原呈现被中和抗体识别的表位,用于抗逃逸病毒抑制的受体陷阱,金属蛋白和酶,以及具有围绕已知结合基序扩展的设计界面的靶结合蛋白。

 

第二种Missing information recovery中,从所需的功能位点开始,共同填充蛋白质所需的缺失序列和结构信息,并通过经过更新的RoseTTAFold训练以从结构中恢复序列。

 

AlphaFold2 结构预测计算表明,这些方法可以准确地生成包含非常广泛的功能位点的蛋白质。


潜在诺奖候选人、蛋白质设计师

 

提到蛋白质设计,不能不提到大名鼎鼎的蛋白质设计师——David Baker。

 

他是华盛顿大学生物化学教授和霍华德休斯医学研究所的研究员,IPD 所长和首席研究员。

 

作为蛋白质设计和结构研究的领头人,这几年来一直被认为是诺奖的有力竞争者。

 

 

2020年11月30日,由 DeepMind公司开发的人工智能程序AlphaFold2,在蛋白质结构预测大赛CASP14中,对大部分蛋白质结构的预测与真实结构只差一个原子的宽度,达到了人类利用冷冻申镜等复杂仪器观察预测的水平,这是蛋白质结构预测史无前例的与大进步。

 

随后,David Baker 教授带领的研究人员,研发出了一款完全免费的RoseTTAFold,不仅拥有媲美AlphaFold2的蛋白质结构预测超高准确度,而且更快、所需计算机处理能力更低,

 

现在,David Baker教授带领的研究团队,进一步将AlphaFold2与RoseTTAFold相结合,成功用干蛋白质-蛋白质复合物结构的预测。

 

Baker表示,「在蛋白质设计研究所这忙碌的一年中,我们设计COVID-19疗法和疫苗并将其投入临床试验,同时开发出用于高精度蛋白质结构预测的RoseTTAFold工具。我很高兴科学界已经在使用 RoseTTAFold 服务器来解决突出的生物学问题」。

 

梦想和现实

 

OpenAI使用神经网络,仅凭文本就创建了大量的生动图像。

 

DALL·E算法是GPT-3的衍生产品,它通过检测训练中的模式,根据简单的文本提示生成了栩栩如生的图像。

 

构建蛋白质功能位点也是类似的。

 

其中,氨基酸是字母,蛋白质的功能位点是图像。神经网络可以通过训练来观察数据中的模式。训练结束,便可以对它进行测试,检测它是否能产生一个还算不错的解决方案。

 

该团队从之前的产品trRosetta入手。这是一个神经网络,最初的设计目的是基于氨基酸序列来构建新的蛋白质,同时能够预测它们的结构。

 


这个算法看起来很完美,因为它既能预测蛋白质的氨基酸序列,又能预测其结构。

 

然而,它并没有真正起作用。相比之下,RoseTTAFold表现得更为出色。

 

这个算法的强大之处就在于它的设计,即在纳米尺度上对每个氨基酸进行建模,为每个原子提供坐标。

 

RoseTTAFold可以就手头问题去预测一个特定的功能结构,并提出一个粗略的草图作为最终设计。

 

不过,研究小组隐藏了部分蛋白质序列(或结构)。

 

这款软件必须学会如何从嘈杂的无线电拦截中破译信息,也就是说,在这种情况下,你只能听到前几个单词,然后通过填空理解其真实含义。

 

RoseTTAFold解决了「缺失信息恢复问题」,自动完成氨基酸序列和结构,以高保真度构建了给定的功能区。

 

RoseTTAFold可以同时解决构建氨基酸序列,并为该位点生成骨架的问题。这就像把单词写在纸上:写信人除了要确保拼写无误,还要检查语法和语义是否正确。

 

该团队对他们的新发明进行了测试,设计出了几种药物和疫苗,这些药物和疫苗可能会成功对抗病毒和癌症。

 

在进行该项目期间,Jue Wang博士两岁的儿子因RSV肺部感染而住院,这种病毒通常表现出类似感冒的症状,但对小孩和老年人来说可能是致命的。

 

当时,Jue Wang博士正在使用该算法设计新的治疗方法,其中包括RSV上的潜在位点,以进一步测试疫苗和药物。这是一个相对良好的结构。

 

这个软件的设计概括了该疫苗可能结合的两个位点。深度学习方法在此奏效了!

 

 

在其他的几个测试中,该团队还为酶、蛋白质结合蛋白和抓住金属离子的蛋白质设计了功能位点。

 

这种方法为揭开天然蛋白质的神秘面纱打开了大门,同时也可能为合成生物学设计新的蛋白质。

 

总之,这是深度学习的另一个胜利,也是人工智能和生物学巧妙结合的「作品」。


参考资料:https://singularityhub.com/2022/07/26/protein-designing-ai-opens-door-to-medicines-humans-couldnt-dream-up/

相关文章
|
16天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
73 9
|
15天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
38 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法
DGLM(Diffusion Guided Language Modeling)是一种新型框架,结合了自回归模型的流畅性和扩散模型的灵活性,解决了现有引导生成方法的局限性。DGLM通过扩散网络生成语义提案,并使用轻量级提示生成器将嵌入转化为软提示,引导自回归解码器生成文本。该方法无需微调模型权重,易于控制新属性,并在多个基准数据集上表现出色。实验结果显示,DGLM在毒性缓解、情感控制和组合控制等方面优于现有方法,为可控文本生成提供了新的方向。
44 10
扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法
|
16天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
44 0
|
16天前
|
机器学习/深度学习 数据采集 人工智能
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第26天】近年来,深度学习技术在医学影像诊断中的应用日益广泛,通过训练大量医学影像数据,实现对疾病的准确诊断。例如,卷积神经网络(CNN)已成功用于识别肺癌、乳腺癌等疾病。深度学习不仅提高了诊断准确性,还缩短了诊断时间,提升了患者体验。然而,数据隐私、数据共享和算法透明性等问题仍需解决。未来,AI将在医学影像诊断中发挥更大作用,成为医生的得力助手。
42 0
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
【通义】AI视界|AI的胜利!蛋白质结构预测获诺贝尔化学奖
本文介绍了最新的人工智能动态,包括OpenAI计划在新加坡设立新办事处以加速亚太布局、蛋白质结构预测获得诺贝尔化学奖、OpenAI请求法院驳回马斯克的诉讼、Meta的人工智能聊天机器人将在21个新地区推出,以及亚马逊推出的“视觉辅助包裹检索”技术。这些进展展示了人工智能领域的快速发展及其在各行业的广泛应用。点击[通义官网]了解更多功能。
|
30天前
|
机器学习/深度学习 人工智能 数据可视化
深度学习之可解释人工智能(Explainable AI,XAI)
可解释人工智能(XAI)是一个旨在使AI决策过程透明和可理解的研究领域。随着AI和机器学习技术在多个行业中的应用变得越来越广泛,其决策过程的透明度和可解释性变得极其重要。
46 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习之稳健的模型推理与不确定性建模
基于深度学习的稳健模型推理与不确定性建模,是现代AI系统中至关重要的研究方向。随着深度学习在各类应用中的成功,如何保证模型在面对未知或不确定性输入时仍能做出稳健的推理,并能够量化这种不确定性,成为关键问题。稳健性与不确定性建模可以提高模型的安全性、可靠性,尤其在自动驾驶、医疗诊断等高风险领域。
36 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的未来:深度学习与自然语言处理的融合
【9月更文挑战第22天】本文旨在探讨AI技术中深度学习与自然语言处理的结合,以及它们如何共同推动未来技术的发展。我们将通过实例和代码示例,深入理解这两种技术如何相互作用,以及它们如何影响我们的生活和工作。
49 4
|
2月前
|
机器学习/深度学习 搜索推荐 数据挖掘
深度学习之因果关系建模
基于深度学习的因果关系建模是一项旨在通过深度学习技术识别和理解数据之间因果关系的研究领域。因果关系建模不仅仅关注变量之间的相关性,还希望揭示导致某种结果的根本原因。
102 2

热门文章

最新文章