iOS MachineLearning 系列(10)—— 自然语言分析之文本拆解

本文涉及的产品
全局流量管理 GTM,标准版 1个月
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 本系列的前几篇文章介绍了iOS中有关图像和视频处理的API,视觉处理主要有Vision框架负责,本篇起,将介绍在iOS中Machine Learning领域相关的自然语言处理框架:NaturalLanguage。

iOS MachineLearning 系列(10)—— 自然语言分析之文本拆解

本系列的前几篇文章介绍了iOS中有关图像和视频处理的API,视觉处理主要有Vision框架负责,本篇起,将介绍在iOS中Machine Learning领域相关的自然语言处理框架:NaturalLanguage。

1 - 简介

NaturalLanguage是iOS种提供的一种处理自然语言的内置框架,使用它不会使应用的包体积增大,不会为应用带来额外的负担,且可以实现非常强大的语言处理功能。

NaturalLanguage默认支持多种语言,拥有如下能力:

  • 检测一段文本所使用的语言。
  • 将一段文本按照词组,句子,段落进行拆解。
  • 进行词性分析。
  • 进行语义分析。

本篇,我们主要介绍其文本拆解能力,及如何使用这些API。

2 - 拆解文本 

我们先从一个简单的示例来看如何使用NaturalLanguage框架中的API进行文本拆解。

首先准备一段测试文本,如下:

最近,随着Chat-GPT4的发布,人工智能相关的资讯和话题再次火热了起来😄。

有了人工智能的加持,对人们的生活以及各行各业的工作都将带来效率的极大提升。目前,各种大模型的发布层出不穷。这些大模型虽然功能非常强大(如文本理解,绘图等),但对于个人来说,要跑起这样一个模型来对外提供服务还是比较困难的,其需要有非常强大的算力支持。

这段文案有两个段落组成。我们可以先尝试对其内的单词进行拆解。 使用NLTokenizer来解析文本,定义NLTokenizer实例如下:

let tokenizer = NLTokenizer(unit: .word)

其参数unit确定要解析的元素类型,枚举如下:

public enum NLTokenUnit : Int, @unchecked Sendable {
    // 以单词为基础进行拆解
    case word = 0 
    // 以句子为基础进行拆解
    case sentence = 1
    // 以段落为基础进行拆解
    case paragraph = 2 
    // 以文档为基础,此模式下会返回原字符串
    case document = 3 
}

调用如下的方法即可进行拆解任务:

tokenizer.enumerateTokens(in: string.startIndex ..< string.endIndex) { range, attribute in
    let word = string[range]
    self.showWord(string: String(word), type: attribute)
    return true
}

在回调block中,如果需要停止解析,返回false即可。解析的结果会将元素属性,所在原字符串中的范围进行返回。其中元素属性结构体定义如下:

public struct Attributes : OptionSet, @unchecked Sendable {

    public init(rawValue: UInt)

    // 包含数值    
    public static var numeric: NLTokenizer.Attributes { get }
    // 包含符号
    public static var symbolic: NLTokenizer.Attributes { get }
    // 包含表情
    public static var emoji: NLTokenizer.Attributes { get }
}

如果上面定义的3个静态值都没有命中,则表示当前元素只包含简单文本。

showWord方法简单实现如下:

func showWord(string: String, type: NLTokenizer.Attributes) {
    var t = ""
    if type.contains(.emoji) { t.append("[emoji]") }
    if type.contains(.numeric) { t.append("[num]") }
    if type.contains(.symbolic) { t.append("[sym]") }
    if t.isEmpty {
        t = "txt"
    }
    resultLabel.text = (resultLabel.text ?? "").appending("【\(string) - \(t)】")
}

分别以单词,句子和段落的模式进行拆解,效果如下所示:

        

可以看到,整体来说NaturalLanguage对于中文的解析能力还是比较强大的。

3 - 再看NLTokenizer 类

NLTokenizer类专门用来对文本进行拆解,本身比较简单。其中的NLTokenUnit用来设置拆解模式,内部Attributes结构体可以标记出所拆解出的元素所包含的属性。NLTokenizer类本身定义如下:

open class NLTokenizer : NSObject {
    // 初始化方法,设置拆解模式
    public init(unit: NLTokenUnit)
    // 拆解单元模式
    open var unit: NLTokenUnit { get }
    // 进行处理的字符串
    open var string: String?
    // 设置文本所使用的语言,如果不设置可以自行解析
    open func setLanguage(_ language: NLLanguage)
    // 解析文本某个位置的元素
    public func tokenRange(at index: String.Index) -> Range<String.Index>
    // 解析文本某个范围的元素
    public func tokenRange(for range: Range<String.Index>) -> Range<String.Index>
    // 枚举出所有元素
    public func enumerateTokens(in range: Range<String.Index>, using block: (Range<String.Index>, NLTokenizer.Attributes) -> Bool)
    // 解析所有元素
    public func tokens(for range: Range<String.Index>) -> [Range<String.Index>]
}
拆解往往是自然语言分析的第一步,通常我们会将长文本进行拆解,之后在对每个元素进行语言类型分析或语义分析,以及词汇的词性分析等,后面的文章会具体再做介绍。
目录
相关文章
|
16天前
|
安全 Android开发 数据安全/隐私保护
深入探讨iOS与Android系统安全性对比分析
在移动操作系统领域,iOS和Android无疑是两大巨头。本文从技术角度出发,对这两个系统的架构、安全机制以及用户隐私保护等方面进行了详细的比较分析。通过深入探讨,我们旨在揭示两个系统在安全性方面的差异,并为用户提供一些实用的安全建议。
|
2月前
|
开发工具 Android开发 Swift
安卓与iOS开发环境对比分析
在移动应用开发的广阔舞台上,安卓和iOS这两大操作系统无疑是主角。它们各自拥有独特的特点和优势,为开发者提供了不同的开发环境和工具。本文将深入浅出地探讨安卓和iOS开发环境的主要差异,包括开发工具、编程语言、用户界面设计、性能优化以及市场覆盖等方面,旨在帮助初学者更好地理解两大平台的开发特点,并为他们选择合适的开发路径提供参考。通过比较分析,我们将揭示不同环境下的开发实践,以及如何根据项目需求和目标受众来选择最合适的开发平台。
51 2
|
2月前
|
安全 Android开发 数据安全/隐私保护
探索安卓与iOS的安全性差异:技术深度分析与实践建议
本文旨在深入探讨并比较Android和iOS两大移动操作系统在安全性方面的不同之处。通过详细的技术分析,揭示两者在架构设计、权限管理、应用生态及更新机制等方面的安全特性。同时,针对这些差异提出针对性的实践建议,旨在为开发者和用户提供增强移动设备安全性的参考。
138 3
|
1月前
|
开发工具 Android开发 Swift
安卓与iOS开发环境的差异性分析
【10月更文挑战第8天】 本文旨在探讨Android和iOS两大移动操作系统在开发环境上的不同,包括开发语言、工具、平台特性等方面。通过对这些差异性的分析,帮助开发者更好地理解两大平台,以便在项目开发中做出更合适的技术选择。
|
2月前
|
安全 Linux Android开发
探索安卓与iOS的安全性差异:技术深度分析
本文深入探讨了安卓(Android)和iOS两个主流操作系统平台在安全性方面的不同之处。通过比较它们在架构设计、系统更新机制、应用程序生态和隐私保护策略等方面的差异,揭示了每个平台独特的安全优势及潜在风险。此外,文章还讨论了用户在使用这些设备时可以采取的一些最佳实践,以增强个人数据的安全。
|
2月前
|
IDE 开发工具 Android开发
安卓与iOS开发环境对比分析
本文将探讨安卓和iOS这两大移动操作系统在开发环境上的差异,从工具、语言、框架到生态系统等多个角度进行比较。我们将深入了解各自的优势和劣势,并尝试为开发者提供一些实用的建议,以帮助他们根据自己的需求选择最适合的开发平台。
49 1
|
3月前
|
开发框架 Android开发 Swift
安卓与iOS应用开发对比分析
【8月更文挑战第20天】在移动应用开发的广阔天地中,安卓和iOS两大平台各占半壁江山。本文将深入探讨这两大操作系统在开发环境、编程语言、用户界面设计、性能优化及市场分布等方面的差异和特点。通过比较分析,旨在为开发者提供一个宏观的视角,帮助他们根据项目需求和目标受众选择最合适的开发平台。同时,文章还将讨论跨平台开发框架的利与弊,以及它们如何影响着移动应用的开发趋势。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。
|
1月前
|
自然语言处理 算法 Python
自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
【10月更文挑战第9天】自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
48 4