Linux内核17-硬件如何处理中断和异常

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
公网NAT网关,每月750个小时 15CU
简介: Linux内核17-硬件如何处理中断和异常

在上一篇文章中,我们已经了解了中断和异常的一些概念,对于中断和异常也有了大概的理解。那么,系统中硬件到底是如何处理中断和异常的呢?本文我们就以常见的X86架构为例,看看中断和异常的硬件工作原理。


1 高级可编程中断控制器-APIC


之前,我们主要考虑的单处理器系统,如果是多处理器系统,主PIC控制器的INTR管脚是如何接到CPU上的?我们接下来讨论这个话题。

我们知道,多核处理系统的价值在于 并行处理。所以,如何把中断分配到每一个CPU上就至关重要了。基于这个原因,Intel从奔腾III开始,引入一个新的高级可编程中断控制器(I/O-APIC)。这个控制器是8259A中断控制器的加强版。为了兼容旧版本的操作系统,有些主板包含这两种芯片。x86架构中,每个处理器包含自己的APIC,每个APIC具有32位的寄存器,内部时钟,内部定时器以及2个额外的IRQ线,LINT0和LINT1,用作APIC的中断。所有私有的APIC都连接到I/O-APIC,组成一个多APIC系统。

图4-1展示了一个多APIC系统的原理图。I/O-APIC通过APIC总线和各个APIC连接在一起。I/O-APIC相等于一个中继的角色。


640.png

图4-1 多APIC系统

I/O-APIC由24条中断线,中断重定向表,可编程寄存器和一个通过APIC总线收发数据的消息单元组成。与8259A中断控制器不同,管脚编号不再具有优先级:重定向表中的每一项都可以被独立设置中断向量和优先级,目的处理器以及处理器如何处理该中断。也就是说,中断重定向表就是外部IRQ到私有APIC的映射关系。

中断请求被分配到CPU上的方式有两种:

  1. 静态分配
    按照重定向表中的定义把IRQ请求分配到相应的私有APIC高级可编程中断控制器上。中断可以指定给单个CPU,或者一组CPU,或者所有的CPU(相当于广播)。
  2. 动态分配
    IRQ请求被发送给正在运行低优先级进程的处理器的私有APIC中断控制器上。通俗地说,就是哪个处理器正在运行低优先级任务,IRQ请求就发送给谁。
    每个私有APIC都有一个可编程任务优先级寄存器,用来保存当前运行任务的优先级。Intel期望每次进程切换的时候,操作系统内核修改这个寄存器。
    如果有多个CPU拥有相同的最低任务优先级,则使用仲裁技术分配中断请求。根据仲裁,每个CPU被分配一个不同的优先级(0-15,数字越小,优先级越大),这个优先级存储在私有APIC的任务优先级寄存器中。
    分配策略是,每当分配一个中断请求给一个CPU,则它对应的仲裁优先级被自动设为0,而其它CPU的仲裁优先级则被增加。当优先级寄存器中的值大于15时,则设为1。因为具有相同任务优先级的CPU的中断分配使用循环方式进行。

动态分配的策略就是负载均衡的一种手段。关于负载均衡的算法以后再研究。

除了CPU与外设之间的中断,多APIC系统还允许CPU产生CPU之间的中断。当一个CPU想给另一个CPU发送中断时,它就会把目标CPU的私有APIC的标识符和中断号存储到自己APIC的中断命令寄存器(ICR)中。然后通过APIC总线发送给目标APIC,该APIC就会给自己的CPU发送一个相应的中断。

CPU间的中断(简称IPI)是多核系统一个重要组成部分。Linux有效地利用它们,在CPU之间传递消息。

目前,大部分的单核系统也都包含一个I/O-APIC芯片,可以使用两种不同的方式配置它:

  1. 当一个标准的8259A类型的外部PIC使用。私有APIC被禁止,LINT0和LINT1这两个IRQ请求线被分别配置为INTR和NMI管脚。
  2. 作为标准的I/O-APIC使用,只不过只有一个CPU而已。


2 异常


x86架构大约有20种不同的异常。内核必须为每种异常提供专用的处理函数。对于某些异常,CPU控制单元也会产生硬件错误码,并将其压入内核态栈,然后再启动异常处理函数。

下表是异常列表,列出了异常号,名称,类型等等。更多信息请参考Intel技术手册。

# 异常 类型 异常处理函数 信号
0 除法错误 fault divide_error() SIGFPE
1 Debug trap/fault debug( ) SIGTRAP
2 NMI - nmi( ) -
3 断点 trap int3( ) SIGTRAP
4 溢出 trap overflow( ) SIGSEGV
5 边界检查 fault bounds( ) SIGSEGV
6 非法操作码 fault invalid_op( ) SIGILL
7 设备不可用 fault device_not_available( ) -
8

串行处理

异常错误

abort doublefault_fn() -
9

协处理器

错误

abort coprocessor_segment_overrun( ) SIGFPE
10 非法TSS fault invalid_TSS( ) SIGSEGV
11 段引用错误 fault segment_not_present( ) SIGBUS
12 栈段错误 fault stack_segment( ) SIGBUS
13 通用保护 fault general_protection( ) SIGSEGV
14 页错误 fault page_fault( ) SIGSEGV
15 Intel保留 - - -
16 浮点错误 fault coprocessor_error( ) SIGFPE
17 对齐检查 fault alignment_check( ) SIGBUS
18 机器检查 abort machine_check() -
19

SIMD

浮点异常

fault simd_coprocessor_error() SIGFPE

Intel保留20-31未来使用。如上表所示,每个异常都有一个专门的处理函数处理,并给造成异常的进程发送一个信号。


3 中断描述符表


现在,我们已经知道了中断信号是如何从设备发出,然后经过高级可编程中断控制器的分配,到达各个指定的CPU中。那么,剩下的工作就是内核的了,内核使用一个中断描述符表(IDT),记录每个中断或者异常编号以及相应的处理函数。那么,收到中断信号后,将相应的处理函数的地址加载到eip寄存器中执行即可。

IDT表中,每一项对应一个中断或者异常,大小8个字节。因而,IDT需要256x8=2048个字节大小的存储空间。

IDT表的物理地址存储在CPU寄存器idtr中:包括IDT的基地址和最大长度。在使能中断之前,必须使用lidt汇编指令初始化IDT表。

IDT表包含三种类型的描述符,使用Type位域表示(40-43位)。下图分别解释了这三种描述符各个位的意义。

640.png


三种描述符分别为:

  1. 任务门
    包含中断发生时要替换当前进程的新进程的TSS选择器。
  2. 中断门
    包含段选择器和在段中的偏移量。设置了正确的段后,处理器清除IF标志,禁止可屏蔽中断。
  3. 陷阱门
    同中断门类似,只是不会修改IF标志。


4 中断和异常的硬件处理


现在,我们来探究一下CPU控制单元是如何处理中断和异常的。我们假设内核已经完成初始化,CPU工作在保护模式下。

CPU控制单元,在取指令之前,检查控制单元在执行前一条指令的时候是否有中断或异常发生。如果发生中断,控制单元就会做如下处理:

  1. 确定中断或异常的编号N;
  2. 读取IDT表中的第N项;(在后面的描述中,假设包含的是中断门或陷阱门)
  3. 获取GDT的基地址,遍历GDT找到IDT表第N项中的段选择器标识的段描述符。这个描述符指定了包含中断或异常处理程序的段的基地址。
  4. 确保中断合法性。
    首先比较cs寄存器中的CPL(当前特权等级)和包含在GDT中的段描述符的DPL(描述符特权等级),如果CPL小于DPL,产生 通用保护 异常,因为中断处理程序的特权等级不能比造成中断的程序的低。对于可编程异常,还会做进一步的安全检查:比较当前特权等级(CPL)和IDT表中包含的描述符的DPL,如果DPL小于CPL,则产生通用保护的异常。后一项检查,可以阻止用户应用程序访问特定的trap或中断门。
  5. 检查特权等级是否发生变化。如果CPL与描述符中的DPL不同,控制单元应该使用新特权等级下的堆栈。

其实对于Linux来说,只使用了supervisor和user两种特权等级。所以中断应该都是在supervisor特权等级下运行。

  1. 读取tr寄存器,访问运行中的进程的TSS段;
  2. 使用新特权等级对应的堆栈段和堆栈指针加载ss和esp寄存器;(这些值存储在TSS中)
  3. 在新的堆栈中,保存旧任务的ss和esp寄存器值。(处理完中断或异常后,还要恢复到旧任务执行)
  1. 根据造成异常的指令的逻辑地址,加载cs和eip寄存器(异常解决后,程序可以继续从这儿执行);
  2. 保存eflags、cs和eip到堆栈中;
  3. 如果异常携带异常错误码,将其保存在堆栈中;
  4. 根据IDT表中的第N项内容,加载cs和eip寄存器。

至此,CPU控制单元跳转到中断或异常处理程序处开始执行。等到中断或异常处理完成后,把CPU的使用权让给之前被中断的进程,使用iret指令,该指令强迫控制单元执行下面步骤:

  1. 加载被中断进程的cs,eip和eflags寄存器。(如果压栈过异常错误码,应该在执行iret指令之前弹出)
  2. 检查CPL是否等于cs寄存器中的CPL,如果相等,则iret指令结束执行;否则,继续。
  3. 加载旧特权等级的ss和esp寄存器值。
  4. 检查ds、es、fs和gs寄存器中的值。如果它们之中任何一个的描述符中的DPL小于CPL,则清除相应的段寄存器。这么做,可以禁止用户态程序使用先前内核态的段寄存器。如果这些寄存器没有被清除,恶意用户态程序就可以利用它们访问内核地址空间。
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
高可用应用架构
欢迎来到“高可用应用架构”课程,本课程是“弹性计算Clouder系列认证“中的阶段四课程。本课程重点向您阐述了云服务器ECS的高可用部署方案,包含了弹性公网IP和负载均衡的概念及操作,通过本课程的学习您将了解在平时工作中,如何利用负载均衡和多台云服务器组建高可用应用架构,并通过弹性公网IP的方式对外提供稳定的互联网接入,使得您的网站更加稳定的同时可以接受更多人访问,掌握在阿里云上构建企业级大流量网站场景的方法。 学习完本课程后,您将能够: 理解高可用架构的含义并掌握基本实现方法 理解弹性公网IP的概念、功能以及应用场景 理解负载均衡的概念、功能以及应用场景 掌握网站高并发时如何处理的基本思路 完成多台Web服务器的负载均衡,从而实现高可用、高并发流量架构
相关文章
|
3天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
21 4
|
5天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
23 6
|
6天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
23 5
|
6天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
6天前
|
缓存 运维 网络协议
深入Linux内核架构:操作系统的核心奥秘
深入Linux内核架构:操作系统的核心奥秘
22 2
|
监控 Linux 机器学习/深度学习
|
4天前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
21 3
|
4天前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
16 2
|
12天前
|
缓存 监控 Linux
|
15天前
|
Linux Shell 数据安全/隐私保护