m基于大衍数无高阶环稀疏校验矩阵H构造算法和RMP消息传递的QC-LDPC性能matlab仿真

简介: m基于大衍数无高阶环稀疏校验矩阵H构造算法和RMP消息传递的QC-LDPC性能matlab仿真

1.算法仿真效果
matlab2017b仿真结果如下:

efa8b10c50315afc96323adf53df923c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
  LDPC 码早于1962 年由Gallager提出,可以看成是一个具有稀疏校验矩阵的线性分组码。自从Mackay 和Neal发现LDPC 码的性能非常接近香农限以后,LDPC 码越来越受到人们的重视。基于准循环LDPC(QC-LDPC)码结构特点,提出了一种支持多种码率QC-LDPC 译码器的设计方法,并设计实现了一个能够实时自适应支持三个不同H 阵的通用QC-LDPC 译码器。

   QC-LDPC(Quasi-Cyslic Low-Density Parity-Check Codes)即准循环LDPC码。之前介绍的LDPC码基本属于随机构造法,构造出的码性能很好,但校验矩阵具有不规律性,存在校验矩阵存储于读取困难、编码复杂度高等问题,相对难以实现。准循环LDPC码是结构化LDPC码的重要子集,其奇偶校验矩阵可以分成多个大小相等的方阵,每个方阵都是单位矩阵的循环移位矩阵或全0矩阵,非常便于存储器的存储和寻址,从而大大降低了LDPC码的编译码复杂度,并且具有重复累计结构的准循环LDPC码能够实现线性复杂度的快速编码。因此,目前实际中所使用的LDPC码大都使用这种校验矩阵构造方式。

    利用大衍数列的独特性质设计指数矩阵,并将其用来扩展原模图矩阵,得到的校验矩阵中不存在四环。因为原模图基矩阵由计算机搜索算法产生,具有列数可灵活改变的优点,并且该方案构造的校验矩阵中六环的数量相比于基于大衍数列构造法大大地减少了。基于大衍数列构造准循环低密度校验码的方法.该方法利用大衍数列固定项差对应的值单调递增的特点,构造出的校验矩阵不含有长度为4的环,具有准循环结构,节省了校验矩阵的存储空间.

LDPC译码分为硬判决译码和软判决译码

    硬判决译码又称代数译码,主要代表是比特翻转(BF)译码算法,它的实现比较简单,但是译码性能很差。硬判决译码的基本假设是当校验方程不成立时,说明此时必定有比特位发生了错误,而所有可能发生错误的比特中不满足检验方程个数最多的比特发生错误的概率最大。在每次迭代时翻转发生错误概率最大的比特并用更新之后的码字重新进行译码。

    软判决译码是一种基于概率论的译码算法,通常需要与迭代译码进行结合,才能体现成译码性能的优势,基本算法是置信传播(BP)译码算法,它的实现比代数译码方法的复杂度高很多,但译码性能非常好。

    为了解决BP译码算法实现困难问题,在学术界牵起了优化算法的浪潮,对数域置信传播译码(LLR BP)算法、最小和(Min-Sum)译码算法、Normalized Min-Sum译码算法、Offset Min-Sum译码算法等相继涌现。

    在迭代译码的过程中,信息调度方式分为两种:泛滥式调度和分层式调度。泛滥式调度的特点在于每一次译码迭代过程中,首先计算从变量节点到校验节点的所有软信息,然后计算从校验节点到变量节点的所有软信息。分层调度的特点是在计算每层软信息时,更新此次迭代中的相关的节点信息,用于下一层的软信息计算。

    LDPC译码结构的设计方面主要分为三种:全并行译码结果、行并行译码结构、块并行译码结构。泛滥式的调度比较适合全并行结构,但是译码器的硬件复杂度始终是一个技术瓶颈。分层式的调度适合行并行和块并行结构,可以减少译码所需的迭代次数。

基于RMP消息传递规则的LDPC译码算法

    在LDPC译码部分,其消息传递规则主要有SMP和RMP两种准则,两个复杂度类似,但是RMP的收敛速度更快。传统的BP译码算法,主要是基于SMP这种消息传递规则的。下面,我们就SMP和RMP的区别和性能优势进行分析:

    对于SMP译码算法,其在译码迭代过程中,校验节点和变量节点同时进行消息传递和处理,其校验节点和变量节点的更新是一个同步的过程。

    而对于RMP而言,其在译码迭代过程中,与校验节点相连的变量节点的更新可以使用该次迭代中已经更新过的消息,通过这种方式,可以提高算法的收敛性,所以在实际仿真中,基于RMP的译码算法,其收敛速度将远远大于基于SMP的译码算法。迭代一次RMP的译码效果相当于SMP算法多次迭代才能获得的性能。

  基于RMP消息传递规则的BP译码算法,其译码步骤如下所示:

0ed8903049e3773ddc88c7940e81c711_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c3110a560f2cedb0e148b4665ae3c669_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    改进后的译码算法,基于RMP消息传递方式的译码算法,其每次迭代过程均包含两次循环,分别为内循环和外循环,其中,通过外循环来计算每个校验节点,通过内循环更新和校验节点向连接的变量节点。 

3.MATLAB核心程序

 
%%
n           = 3;
m           = 6;
p           = 150;
N           = m*p;
M           = n*p;
 
if flag==1
SNR         = [-1,0,1,1.5];
eln         = [500,200,100,25];
end
if flag==0
SNR         = [-1,0,1,2,3];
eln         = [500,300,200,100,100];
end
 
R           = n/m;
k           = R*log2(2);
EbN0        = SNR/k;
Max_iter    = 15; 
 
H1          = func_dys(n,m,p,flag);
pause(2);
%%
%开始循环,进行误码率仿真
for i=1:length(SNR)
    i
    Bit_err(i)    = 0; %设置误码率参数
    Num_err       = 0; %蒙特卡洛模拟次数
    Numbers       = 0; %误码率累加器
    %信道参数
    Hsd = 1;
    Hsr = 1;
    Hrd = 1;
    
    while Num_err <= eln(i) 
        fprintf('Eb/N0 = %f\n', SNR(i));
        Num_err
        N0  = 2*10^(-EbN0(i)/10);
        Trans_data             = round(rand(N-M,1));           %产生需要发送的随机数
        [ldpc_code,newH]       = func_Enc(Trans_data,H1);      %LDPC编码
        u                      = [ldpc_code;Trans_data];       %LDPC编码
        Trans_BPSK             = 2*u-1;                        %BPSK
        %S->D 
        Rec_sd                 = Hsd*Trans_BPSK+sqrt(N0/2)*randn(size(Trans_BPSK));
        %接收端
        [vhatsd,nb_itersd,successsd] = func_Dec(Rec_sd,newH,N0,Max_iter);
        [nberr,rat] = biterr(vhatsd(M+1:N)',Trans_data);
        %LDPC译码 
        Num_err              = Num_err+nberr;
        Numbers              = Numbers+1;
    end
    Bit_err(i) = Num_err/(N*Numbers);
end
相关文章
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
2天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
2天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
29 15
|
4天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章