基于Astar算法的智能避障最短路径搜索matlab仿真,可以任意选择起点和终点

简介: 基于Astar算法的智能避障最短路径搜索matlab仿真,可以任意选择起点和终点

1.算法仿真效果
matlab2022a仿真结果如下:

774b1d68a8d3d86f0d94769e63eb4a8b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
ae11704a5c2c0b3f7cfa064e33c5fc92_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f553803428921d432b7f4cd0f067a348_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    Astar算法是一种图形搜索算法,常用于寻路。它是个以广度优先搜索为基础,集Dijkstra算法与最佳优先(best fit)算法特点于一身的一种 算法。它通过下面这个函数来计算每个节点的优先级,然后选择优先级最高的节点作为下一个待遍历的节点。

   AStar(又称 A*),它结合了 Dijkstra 算法的节点信息(倾向于距离起点较近的节点)和贪心算法的最好优先搜索算法信息(倾向于距离目标较近的节点)。可以像 Dijkstra 算法一样保证找到最短路径,同时也像贪心最好优先搜索算法一样使用启发值对算法进行引导。简单点说,AStar的核心在于将游戏背景分为一个又一个格子,每个格子有自己的靠谱值,然后通过遍历起点的格子去找到周围靠谱的格子,接着继续遍历周围…… 最终找到终点。

实现步骤:

1.把起始格添加到开启列表。

2.重复如下的工作:

a) 寻找开启列表中估量代价F值最低的格子。我们称它为当前格。

b) 把它切换到关闭列表。

c) 对相邻的8格中的每一个进行如下操作

  • 如果它不可通过或者已经在关闭列表中,略过它。反之如下。
  • 如果它不在开启列表中,把它添加进去。把当前格作为这一格的父节点。记录这一格的F,G,和H值。
  • 如果它已经在开启列表中,用G值为参考检查新的路径是否更好。更低的G值意味着更好的路径。如果是这样,就把这一格的父节点改成当前格,并且重新计算这一格的G和F值。如果你保持你的开启列表按F值排序,改变之后你可能需要重新对开启列表排序。

d) 停止,

  • 把目标格添加进了关闭列表(注解),这时候路径被找到,或者
  • 没有找到目标格,开启列表已经空了。这时候,路径不存在。

3.保存路径。从目标格开始,沿着每一格的父节点移动直到回到起始格。这就是你的路径。

3.MATLAB核心程序

while((xNode ~= xTarget || yNode ~= yTarget) && NoPath == 1)       %%%  判断当前点是否等于目标点
 
 exp_array=expand_array(xNode,yNode,path_cost,xTarget,yTarget,CLOSED,MAX_X,MAX_Y);  %%% 不在关闭列表的子节点,(x,y,gn,hn,fn),列数是个数
 exp_count=size(exp_array,1);   %%%  可选择的子节点个数
 
 for i=1:exp_count         %%% 把exp_array内的元素添加到 开启列表 里面
    flag=0;                %%% 将exp_array内的点的标志位设为0
    for j=1:OPEN_COUNT         %%% OPEN_COUNT 从1开始,自加
        if(exp_array(i,1) == OPEN(j,2) && exp_array(i,2) == OPEN(j,3) )    %%%判断可选子节点是否与OPEN[]中的点相同
            OPEN(j,8)=min(OPEN(j,8),exp_array(i,5));                       %%%如果相同,比较两个fn的值的大小,并将fn小的坐标点赋值给OPEN(j,8)
......................................................................................
 
  else
      NoPath=0;
  end
end
 
i=size(CLOSED,1);    %%%CLOSE里面的长度
Optimal_path=[];     %%%路径数组
xval=CLOSED(i,1);    %%%把CLOSE最后一组数提出来,最后一组数为目标点
yval=CLOSED(i,2);
i=1;
Optimal_path(i,1)=xval; %%%把目标点的坐标赋给 路径数组的 第一组
Optimal_path(i,2)=yval;
i=i+1;                  
 
if ( (xval == xTarget) && (yval == yTarget))  %%%检测CLOSE最后一组是否为目标点
    inode=0;
   %Traverse OPEN and determine the parent nodes 遍历OPEN并确定父节点
   parent_x=OPEN(node_index(OPEN,xval,yval),4); %node_index returns the index of the node  node_index返回节点的索引
   parent_y=OPEN(node_index(OPEN,xval,yval),5);%%% 将当前点的父节点提出来
   
   while( parent_x ~= xStart || parent_y ~= yStart)   %%% 判断父节点是否为起始点
           Optimal_path(i,1) = parent_x;             %%% 不是 则将父节点送给路径数组
           Optimal_path(i,2) = parent_y;
           %Get the grandparents:-)
           inode=node_index(OPEN,parent_x,parent_y); 
           parent_x=OPEN(inode,4);%node_index returns the index of the node
           parent_y=OPEN(inode,5);
           i=i+1;
    end;
 toc
    
  j = size(Optimal_path,1) + 1;
  Optimal_path(j,1) = xStart;           
  Optimal_path(j,2) = yStart; %%%把起始点加进去
 
 
 p=plot(Optimal_path(j,1)+.5,Optimal_path(j,2)+.5,'bo'); %%
 j=j-1;
 for i=j:-1:1
  pause(.25);
  set(p,'XData',Optimal_path(i,1)+.5,'YData',Optimal_path(i,2)+.5);
 drawnow ;
 end;
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
9月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章