TorchVision Transforms API 大升级,支持目标检测、实例/语义分割及视频类任务

简介: TorchVision Transforms API 大升级,支持目标检测、实例/语义分割及视频类任务


内容导读:TorchVision Transforms API 扩展升级,现已支持目标检测、实例及语义分割以及视频类任务。新 API 尚处于测试阶段,开发者可以试用体验。

本文首发自微信公众号:PyTorch 开发者社区

image.png

TorchVision 现已针对 Transforms API 进行了扩展, 具体如下:

  • 除用于图像分类外,现在还可以用其进行目标检测、实例及语义分割以及视频分类等任务;
  • 支持从 TorchVision 直接导入 SoTA 数据增强,如 MixUp、 CutMix、Large Scale Jitter 以及 SimpleCopyPaste。
  • 支持使用全新的 functional transforms 转换视频、Bounding box 以及分割掩码 (Segmentation Mask)。

Transforms 当前的局限性

稳定版 TorchVision Transforms API,也也就是我们常说的 Transforms V1,只支持单个图像,因此,只适用于分类任务:

from torchvision import transforms
trans = transforms.Compose([
   transforms.ColorJitter(contrast=0.5),
   transforms.RandomRotation(30),
   transforms.CenterCrop(480),
])
imgs = trans(imgs)

上述方法不支持需要使用 Label 的目标检测、分割或分类 Transforms, 如 MixUp 及 cutMix。这使分类以外的计算机视觉任务都不能用 Transforms API 执行必要的扩展。同时,这也加大了用 TorchVision 原语训练高精度模型的难度。

为了克服这个局限性,TorchVision 在其 reference script 中提供了自定义实现, 用于演示所有任务中的增强是如何执行的。

尽管这种做法使得开发者能够训练出高精度的分类、目标检测及分割模型,但做法比较粗糙,TorchVision 二进制文件中还是不能导入 Transforms。

全新的 Transforms API

Transforms V2 API 支持视频、bounding box、label 以及分割掩码, 这意味着它为许多计算机视觉任务提供了本地支持。新的解决方案是一种更为直接的替代方案:

from torchvision.prototype import transforms
# Exactly the same interface as V1:
trans = transforms.Compose([
    transforms.ColorJitter(contrast=0.5),
    transforms.RandomRotation(30),
    transforms.CenterCrop(480),
])
imgs, bboxes, labels = trans(imgs, bboxes, labels)

全新的 Transform Class 无需强制执行特定的顺序或结构,就可以接收任意数量的输入:

# Already supported:
trans(imgs)  # Image Classification
trans(videos)  # Video Tasks
trans(imgs_or_videos, labels)  # MixUp/CutMix-style Transforms
trans(imgs, bboxes, labels)  # Object Detection
trans(imgs, bboxes, masks, labels)  # Instance Segmentation
trans(imgs, masks)  # Semantic Segmentation
trans({"image": imgs, "box": bboxes, "tag": labels})  # Arbitrary Structure
# Future support:
trans(imgs, bboxes, labels, keypoints)  # Keypoint Detection
trans(stereo_images, disparities, masks)  # Depth Perception
trans(image1, image2, optical_flows, masks)  # Optical Flow

functional API 已经更新,支持所有输入必要的 signal processing kernel,如 resizing, cropping, affine transforms, padding 等:

from torchvision.prototype.transforms import functional as F
# High-level dispatcher, accepts any supported input type, fully BC
F.resize(inpt, resize=[224, 224])
# Image tensor kernel
F.resize_image_tensor(img_tensor, resize=[224, 224], antialias=True)
# PIL image kernel
F.resize_image_pil(img_pil, resize=[224, 224], interpolation=BILINEAR)
# Video kernel
F.resize_video(video, resize=[224, 224], antialias=True)
# Mask kernel
F.resize_mask(mask, resize=[224, 224])
# Bounding box kernel
F.resize_bounding_box(bbox, resize=[224, 224], spatial_size=[256, 256])

API 使用 Tensor subclassing 来包装输入,附加有用的元数据,并 dispatch 到正确的内核。 利用 TorchData Data Pipe 的 Datasets V2 相关工作完成后,就不再需要手动包装输入了。目前,用户可以通过以下方式手动包装输入:

from torchvision.prototype import features
imgs = features.Image(images, color_space=ColorSpace.RGB)
vids = features.Video(videos, color_space=ColorSpace.RGB)
masks = features.Mask(target["masks"])
bboxes = features.BoundingBox(target["boxes"], format=BoundingBoxFormat.XYXY, spatial_size=imgs.spatial_size)
labels = features.Label(target["labels"], categories=["dog", "cat"])

除新 API 之外,PyTorch 官方还为 SoTA 研究中用到的一些数据增强提供了重要实现,如 MixUp、 CutMix、Large Scale Jitter、 SimpleCopyPaste、AutoAugmentation 方法以及一些新的 Geometric、Colour 和 Type Conversion transforms。

该 API 继续支持 single image 或 batched input image 的 PIL 和 Tensor 后端,并在 functional API 上保留了 JIT-scriptability。这使得图像映射得以从 uint8 延迟到 float, 带来了性能的进一步提升。

它目前可以在 TorchVision 的原型区域 (prototype area) 中使用,并且支持从 nightly build 版本中导入。经验证,新 API 与先前实现的准确性一致。

当前的局限性

functional API (kernel) 仍然保持 JIT-scriptable 及 fully-BC,Transform Class 提供了相同的接口,却无法使用脚本。

这是因为 Transform Class 使用的是张量子类 (Tensor Subclassing),且接收任意数量的输入,这是 JIT 所不支持的。该局限将在后续版本中不断优化。

一个端到端示

以下是一个新 API 示例,它可以同时使用 PIL 图像和张量。

测试图片:

image.png

代码示例:

import PIL
from torchvision import io, utils
from torchvision.prototype import features, transforms as T
from torchvision.prototype.transforms import functional as F
# Defining and wrapping input to appropriate Tensor Subclasses
path = "COCO_val2014_000000418825.jpg"
img = features.Image(io.read_image(path), color_space=features.ColorSpace.RGB)
# img = PIL.Image.open(path)
bboxes = features.BoundingBox(
    [[2, 0, 206, 253], [396, 92, 479, 241], [328, 253, 417, 332],
     [148, 68, 256, 182], [93, 158, 170, 260], [432, 0, 438, 26],
     [422, 0, 480, 25], [419, 39, 424, 52], [448, 37, 456, 62],
     [435, 43, 437, 50], [461, 36, 469, 63], [461, 75, 469, 94],
     [469, 36, 480, 64], [440, 37, 446, 56], [398, 233, 480, 304],
     [452, 39, 463, 63], [424, 38, 429, 50]],
    format=features.BoundingBoxFormat.XYXY,
    spatial_size=F.get_spatial_size(img),
)
labels = features.Label([59, 58, 50, 64, 76, 74, 74, 74, 74, 74, 74, 74, 74, 74, 50, 74, 74])
# Defining and applying Transforms V2
trans = T.Compose(
    [
        T.ColorJitter(contrast=0.5),
        T.RandomRotation(30),
        T.CenterCrop(480),
    ]
)
img, bboxes, labels = trans(img, bboxes, labels)
# Visualizing results
viz = utils.draw_bounding_boxes(F.to_image_tensor(img), boxes=bboxes)
F.to_pil_image(viz).show()

—— 完 ——

相关文章
|
3月前
|
API 索引
String类下常用API
String类下常用API
43 1
|
3月前
|
安全 Java API
告别繁琐编码,拥抱Java 8新特性:Stream API与Optional类助你高效编程,成就卓越开发者!
【8月更文挑战第29天】Java 8为开发者引入了多项新特性,其中Stream API和Optional类尤其值得关注。Stream API对集合操作进行了高级抽象,支持声明式的数据处理,避免了显式循环代码的编写;而Optional类则作为非空值的容器,有效减少了空指针异常的风险。通过几个实战示例,我们展示了如何利用Stream API进行过滤与转换操作,以及如何借助Optional类安全地处理可能为null的数据,从而使代码更加简洁和健壮。
107 0
|
1月前
|
人工智能 自然语言处理 PyTorch
Text2Video Huggingface Pipeline 文生视频接口和文生视频论文API
文生视频是AI领域热点,很多文生视频的大模型都是基于 Huggingface的 diffusers的text to video的pipeline来开发。国内外也有非常多的优秀产品如Runway AI、Pika AI 、可灵King AI、通义千问、智谱的文生视频模型等等。为了方便调用,这篇博客也尝试了使用 PyPI的text2video的python库的Wrapper类进行调用,下面会给大家介绍一下Huggingface Text to Video Pipeline的调用方式以及使用通用的text2video的python库调用方式。
|
1月前
|
JavaScript API
|
2月前
|
API Python
4. salt-api请求salt-minion执行任务 tornado超时报错
4. salt-api请求salt-minion执行任务 tornado超时报错
|
1月前
|
API
使用`System.Net.WebClient`类发送HTTP请求来调用阿里云短信API
使用`System.Net.WebClient`类发送HTTP请求来调用阿里云短信API
23 0
|
2月前
|
Java API 开发者
【Java字节码操控新篇章】JDK 22类文件API预览:解锁Java底层的无限可能!
【9月更文挑战第6天】JDK 22的类文件API为Java开发者们打开了一扇通往Java底层世界的大门。通过这个API,我们可以更加深入地理解Java程序的工作原理,实现更加灵活和强大的功能。虽然目前它还处于预览版阶段,但我们已经可以预见其在未来Java开发中的重要地位。让我们共同期待Java字节码操控新篇章的到来!
|
2月前
|
Java API 开发者
【Java字节码的掌控者】JDK 22类文件API:解锁Java深层次的奥秘,赋能开发者无限可能!
【9月更文挑战第8天】JDK 22类文件API的引入,为Java开发者们打开了一扇通往Java字节码操控新世界的大门。通过这个API,我们可以更加深入地理解Java程序的底层行为,实现更加高效、可靠和创新的Java应用。虽然目前它还处于预览版阶段,但我们已经可以预见其在未来Java开发中的重要地位。让我们共同期待Java字节码操控新篇章的到来,并积极探索类文件API带来的无限可能!
|
2月前
|
JSON 搜索推荐 API
深入了解亚马逊商品详情API:功能、作用与实例
亚马逊商品详情API接口由官方提供,允许开发者通过程序调用获取商品详细信息,如标题、价格等,适用于电商数据分析、搜索及个性化推荐等场景。接口名称包括ItemLookup、GetMatchingProductForId等,支持HTTP POST/GET请求,需提供商品ID、API密钥及其他可选参数。返回数据格式通常为JSON或XML,涵盖商品详情、分类、品牌、价格、图片URL及用户评价等。该接口对数据收集、实时推荐、营销活动及数据分析至关重要,有助于提升电商平台的数据处理能力、用户体验及商家运营效率。使用时需注册亚马逊开发者账号并申请API访问权限,获取API密钥后按文档构建请求并处理响应数据。
|
3月前
|
Java 索引

热门文章

最新文章