m基于Simulink的自适应模糊控制器设计与仿真实现

简介: m基于Simulink的自适应模糊控制器设计与仿真实现

1.算法仿真效果
matlab2022a仿真结果如下:

a567a1c054a740906288150d144aad87_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
343b46b1df741d24af84c9cc6478b57d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c2a1aeab345edda7d9229d4b44f547e7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
97442c4d4743f46147dad803857610fd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
3baae77ce5081b05d44ee02ee1c7f2ab_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
78d4f34715dab67edeaeac55c38efbce_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
11a3fa7b3f327f66e4bae955c123b479_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    模糊自适应控制器同时结合自适应控制和模糊控制,形成具有自适应的功能的控制系统。模糊自适应控制不要求控制对象具有精确的数学模型,并且还巧妙的引入了自适应律以方便实时的去学习被控对象所具有的各种动态特性,然后再根据动态特性的实时变化来自动更新和修改以及在线实时调整对应的模糊控制器,这样就使得系统在出现各种各样的不确定因素的时候,控制器的控制效果仍然可以保持一致以及具有良好的鲁棒性。
   模糊自适应控制器的基本框架如图1所示。从图1可以看出,在自适应模糊控制的过程中,自适应规则的设计是依据控制性能指标来设计的,随着环境的变化自适应律不断用来修正模糊控制器中的参数。而在非自适应模糊控制系统,模糊控制器是事先已经设计好的,控制器的参数不依控制性能而改变,这就可能导致控制失效。因此,自适应模糊控制具有较好的控制性能。
   整个系统的完整结构为:

28460a16e677614183ca2960c99e2272_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

那么系统的自适应模糊控制模块可以简化为如下的结构:

3299dc9573fab6dfcf72f0c762f82407_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

只不过模糊输入的三个变量都是通过输出反馈得到的数据,从而构成自适应反馈系统。

   模糊自适应PID控制是在PID算法的基础上,以误差e和误差变化率ec作为输入,利用模糊规则进行模糊推理,查询模糊矩阵表进行参数调整,来满足不同时刻的e和ec对PID参数自整定的要求。PID控制有着原理简单,使用方便,适应性强的特点,同时具有制时精度低、抗干扰能力差等缺点,模糊自适应PID控制是在PID算法的基础上,以误差E 和误差变化率EC作为输入,利用模糊规则进行模糊推理,查询模糊矩阵表进行参数调整,来满足不同时刻的E和EC对PID参数自整定的要求.

3.MATLAB核心程序
9dac7abe080a24ac5a014704c476f9f6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c22b8fb11f404a14e2179cf2340cc649_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

close all;
 
%首先在m文件中画出 p1,p2,p3,p4,p5,p6;
p0=[0    0];
p1=[1000 0];
p2=[1000 2000];
p3=[3000 2500];
p4=[4000 2000];
p5=[4000 0];
p6=[2000 -1000];
x=[p0(1) p1(1) p2(1) p3(1) p4(1) p5(1) p6(1)];
y=[p0(2) p1(2) p2(2) p3(2) p4(2) p5(2) p6(2)];
 
 
load x3.mat
load y3.mat
 
 
%直接对路经进行控制可定不可行,需要对路经的角度进行控制,然后反馈过来去控制船的路线
%计算实际的
load fai_tan.mat 
load fai_tan2.mat
 
load x3.mat
load y3.mat
 
 
 
save x3.mat  x3
save y3.mat  y3
load s.mat
 
 
 
%控制后的录像
x0n(1)=x3(2)-150;
y0n(1)=y3(2)+20;
vn=1.19*s/length(fai_tan2);
for i = 2:length(fai_tan2)-1
     x0n(i)= x0n(i-1)+vn*cos(fai_tan2(2,i-1));
     y0n(i)= y0n(i-1)+vn*sin(fai_tan2(2,i-1));    
end
plot(x3,y3,'k','LineWidth',2);
axis([-1000,5500,-1000,2500]);
grid on;hold on;
title('Track keeping');
plot(x0n,y0n,'r','LineWidth',3)
相关文章
|
机器学习/深度学习 传感器 算法
【板球仿真】基于simulink的模糊控制板球系统仿真
【板球仿真】基于simulink的模糊控制板球系统仿真
|
算法
大林算法控制仿真实验(计控实验六simulink)
大林算法控制仿真实验(计控实验六simulink)
746 0
大林算法控制仿真实验(计控实验六simulink)
|
8天前
|
算法
基于模糊PID控制器的的无刷直流电机速度控制simulink建模与仿真
本课题基于模糊PID控制器对无刷直流电机(BLDCM)进行速度控制的Simulink建模与仿真。该系统融合了传统PID控制与模糊逻辑的优势,提高了BLDCM的速度动态响应、抗干扰能力和稳态精度。通过模糊化、模糊推理和解模糊等步骤,动态调整PID参数,实现了对电机转速的精确控制。适用于多种工况下的BLDCM速度控制应用。
自适应模型预测控制器AMPC的simulink建模与仿真
通过Simulink内嵌Matlab实现自适应MPC控制器,结合系统模型与控制对象完成仿真。面对日益复杂的工业过程,AMPC融合MPC与自适应控制优势,依据系统变化自动调节参数,确保优化控制及鲁棒性。MPC通过预测模型优化控制序列;自适应控制则动态调整控制器以应对不确定性。AMPC适用于多变环境下高性能控制需求,如化工、航空及智能交通系统。[使用MATLAB 2022a]
|
4月前
|
算法
基于模糊PID的直流电机控制系统simulink建模与仿真
- **课题概述**: 实现了PID与模糊PID控制器的Simulink建模,对比二者的控制响应曲线。 - **系统仿真结果**: 模糊PID控制器展现出更快的收敛速度与更小的超调。 - **系统原理简介**: - **PID控制器**: 一种广泛应用的线性控制器,通过比例、积分、微分作用控制偏差。 - **模糊PID控制器**: 结合模糊逻辑与PID控制,动态调整PID参数以优化控制性能。 - **模糊化模块**: 将误差和误差变化率转换为模糊量。 - **模糊推理模块**: 根据模糊规则得出控制输出。 - **解模糊模块**: 将模糊控制输出转换为实际控制信号。
基于PID控制器的直流电机位置控制系统simulink建模与仿真
**摘要:** 构建基于PID的直流电机位置控制系统,利用PID的简易性和有效性实现精确控制。在MATLAB2022a中进行系统仿真,展示结果。控制器基于误差(e(t))生成控制信号(u(t)),由比例(K_p)、积分(K_i)和微分(K_d)项构成。系统采用三层控制环:位置环设定速度参考,速度环调节实际速度,电流环确保电流匹配,以达成期望位置。
|
3月前
|
算法
自适应PID控制器的simulink建模与仿真
本研究实现PID控制器参数(kp, ki, kd)的自适应调整,达成最优控制并展示参数收敛过程。MATLAB2022a环境下仿真结果显示,参数经调整后趋于稳定,控制器输出平滑,误差显著降低。自适应PID通过实时监测系统性能自动优化参数,有效应对不确定性,维持系统稳定及高性能。采用不同优化算法调整PID参数,确保最佳控制效果。
|
4月前
|
传感器
基于矢量控制的交流电机驱动simulink建模与仿真
**基于MATLAB2022a的交流电机矢量控制Simulink模型研究,展示了电机的转速、扭矩、电压和电流仿真。矢量控制利用坐标变换独立控制电机的转矩和磁通,提升动态性能和效率。通过电流采样、坐标变换、控制器设计和PWM调制实现,适用于电动汽车等领域的高效驱动。**
|
5月前
|
监控
基于模糊PID控制器的风力温度控制系统simulink建模与仿真
**课题概述:** 设计一个室温控制系统,保持室内温度在23ºc,当温度超出范围时,电风扇自动调整档位。系统监控温度、压强、风速、通风量和风扇参数。 **系统仿真:** 使用MATLAB2022a进行仿真。 **核心原理:** 结合模糊逻辑和PID控制的系统,模糊逻辑处理不确定信息,调整PID参数以优化温度控制。 **模糊PID:** 输入(温度误差e,误差变化率ec),输出(PID参数调整量)。模糊规则库决定参数调整,模糊推理生成输出,清晰化处理转换为实际参数调整,改善系统性能。 **整体结构:** 包含模糊逻辑控制器和PID调节,动态适应环境变化,确保设备稳定高效运行。
DC-MOTOR直流电机的simulink建模与性能仿真
使用MATLAB2022a和Simulink构建的DC电机模型进行仿真,展示了电机在240V电枢电压和150V励磁绕组输入下的性能。仿真输出包括转速、电枢及励磁电流、电磁转矩随时间的变化。结果以图像形式呈现,揭示了电机在洛伦兹力和电磁感应定律作用下的工作原理,通过电流与磁场的交互转换电能为机械能。直流电机借助换向器维持稳定的电磁转矩,并遵循法拉第电磁感应定律和楞次定律。