python实战爬取招聘网站职位数据

简介: 大家都知道金三银四是每年的求职高峰期,是中国招聘市场中最热门的季节之一。这段时间内,许多公司会发布大量的招聘信息,吸引大批求职者前来应聘。同时,也有许多人选择这个时候跳槽,因为这个时候找到新工作的机会相对较大。

大家都知道金三银四是每年的求职高峰期,是中国招聘市场中最热门的季节之一。这段时间内,许多公司会发布大量的招聘信息,吸引大批求职者前来应聘。同时,也有许多人选择这个时候跳槽,因为这个时候找到新工作的机会相对较大。
QQ图片20230330151344.png

疫情放开后感觉求职却越来越难了,现在大家求职都是通过各种招聘app,但是上面太多的岗位介绍,错综复杂的。而且不能把全部的信息全部罗列出来,这样也让人很苦恼,所以今天我们就通过python爬虫技术,为大家解决这个问题。首先我们的爬取目标是boss直聘,需求就是批量把地点、 公司名、工资 、等详细资料做成文档。,在获取数据之前简单的对网站进行了分析,该网站上的反爬主要有两点。1、 直接使用requests库,在不设置任何header的情况下,网站直接不返回数据。2、同一个ip连续访问多次,直接封掉ip。
上面2个都是爬虫道路上的基本困难,直接的解决办法就是1、获取正常的 http请求头,并在requests请求时设置这些常规的http请求头。2、使用代理IP进行访问,代理的质量有千差万别,需要根据自己的实际业务去测试为准招聘网站对IP的需求就很严,经过多次测试对比最后选择了亿牛云爬虫代理,编写爬虫程序并添加代理IP代码如下:


    import requests
    import random

    # 要访问的目标页面
    targetUrl = "https://www.zhipin.com/chengdu/?sid=sem_pz_bdpc_dasou_title"

    # 要访问的目标HTTPS页面
    # targetUrl = "https://www.zhipin.com/chengdu/?sid=sem_pz_bdpc_dasou_title"

    # 代理服务器(产品官网 www.16yun.cn)
    proxyHost = "t.16yun.cn"
    proxyPort = "31111"

    # 代理验证信息
    proxyUser = "16JVJVOR"
    proxyPass = "854562"

    proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
        "host" : proxyHost,
        "port" : proxyPort,
        "user" : proxyUser,
        "pass" : proxyPass,
    }

    # 设置 http和https访问都是用HTTP代理
    proxies = {
        "http"  : proxyMeta,
        "https" : proxyMeta,
    }


    #  设置IP切换头
    tunnel = random.randint(1,10000)
    headers = {"Proxy-Tunnel": str(tunnel)}



    resp = requests.get(targetUrl, proxies=proxies, headers=headers)

    print resp.status_code
    print resp.text
相关文章
|
6天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
40 6
|
6天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
78 44
|
1天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
1天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
2天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
在Web开发中,前后端的高效交互是提升用户体验的关键。本文通过一个基于Flask框架的博客系统实战案例,详细介绍了如何使用AJAX和Fetch API实现不刷新页面查看评论的功能。从后端路由设置到前端请求处理,全面展示了这两种技术的应用技巧,帮助Python Web开发者提升项目质量和开发效率。
8 1
|
2天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
9 1
|
4天前
|
Linux 开发者 iOS开发
Python系统调用实战:如何在不同操作系统间游刃有余🐟
本文介绍了 Python 在跨平台开发中的强大能力,通过实际例子展示了如何使用 `os` 和 `pathlib` 模块处理文件系统操作,`subprocess` 模块执行外部命令,以及 `tkinter` 创建跨平台的图形用户界面。这些工具和模块帮助开发者轻松应对不同操作系统间的差异,专注于业务逻辑。
17 2
|
3天前
|
开发者 Python
探索Python中的装饰器:从入门到实战
【10月更文挑战第30天】本文将深入浅出地介绍Python中一个强大而有趣的特性——装饰器。我们将通过实际代码示例,一步步揭示装饰器如何简化代码、增强函数功能并保持代码的可读性。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往更高效编程的大门。
|
6天前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
17 0
|
8天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###