《R语言数据挖掘:实用项目解析》——第1章 使用R内置数据进行数据处理 1.1 什么是数据挖掘

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介:

本节书摘来自华章计算机《R语言数据挖掘:实用项目解析》一书中的第1章,第1.1节,作者[印度]普拉迪帕塔·米什拉(Pradeepta Mishra),译 黄芸,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

第1章

使用R内置数据进行数据处理

本书主要介绍在R语言平台上实现数据挖掘的方法和步骤。因为R是一种开源工具,所以对各层次的学习者而言,学习使用R语言进行数据挖掘都会很有意思。本书的设计宗旨是,读者可以从数据管理技术着手,从探索性数据分析、数据可视化和建模开始,直至建立高级预测模型,如推荐系统、神经网络模型等。本章将概述数据挖掘的原理及其与数据科学、分析学和统计建模的交叉。在本章,读者将初识R编程语言基础,并通过一个真实的案例,了解怎样读取和写入数据,熟悉编程符号和理解句法。本章还包含了R语言脚本,可供读者动手实践,以加深对原理和术语的理解,领会数据挖掘任务的来龙去脉。本章之所以这样设计,是为了让那些编程基础薄弱的读者也可以通过执行R语言命令来完成一些数据挖掘任务。

本章将简述数据挖掘的意义以及它与其他领域(如数据科学、分析学和统计建模)的关系,还会就使用R进行数据管理的话题展开讨论。通过学习本章的内容,读者应掌握以下知识点:

  • 了解R语言中所使用的各种数据类型,包括向量和向量运算。
  • 数据框的索引及因子序列。
  • 数据框的排序与合并以及数据类型的转换。
  • 字符串操作以及数据对象格式化。
  • 缺失值(NA)的处理方法。
  • 流控制、循环构建以及apply函数的应用。

1.1 什么是数据挖掘

数据挖掘可以定义为这样的过程:从现有数据库中“解读”出有意义的信息,然后加以分析,并将结果提供给业务人员。从不同数据源分析数据,进而归纳出有意义的信息和洞见——这属于统计知识的探索,不仅有助于业务人员,也有助于多个群体,如统计分析员、咨询师和数据科学家。通常,数据库中的知识探索过程是不可预知的,对探索结果也可以从多个角度进行解读。

硬件设备、平板、智能手机、计算机、传感器等电子设备的大规模增长促使数据以超前的速度产生与收集。随着现代计算机处理能力的提升,可以对增长的数据进行预处理和模型化,以解决与商业决策过程相关的各种问题。数据挖掘也可以定义为利用统计方法、机器学习技术、可视化和模式匹配技术从离散的数据库和信息资源库中进行知识密集型搜索。

零售商店内所有物品的条形码、制造业所有货物的射频识别标签、推特简讯、Facebook上的贴子、遍布城市用于监控天气变化的传感器、录像分析、基于观看信息统计的视频推荐……这些结构化和非结构化数据的增长创造了一个催生各种各样的工具、技术和方法的生态系统。前文提到应用于各种数据的数据挖掘技术,不仅提供了有用的数据结构信息,也就企业未来可采取的决策提出了建议。

image

数据挖掘包括以下几个步骤:

1)从数据库和数据仓库中抽取需要的数据。
2)检查数据,删除冗余特征和无关信息。
3)有时需要与其他未关联数据库中的数据相合并。所以,需要找到各个数据库的共同属性。
4)应用数据转换技术。有时,一些属性和特征需要包含在一个模型中。
5)对输入的特征值进行模式识别。这里可能会用到任何模式识别技术。
6)知识表达。其中包括把从数据库中提炼出来的知识通过可视化方式展示给利益相关者。

image

在讨论了数据挖掘的流程和核心组成之后,我们也需注意到实施数据挖掘时可能遇到的挑战,比如运算效率、数据库的非结构化以及怎样将其与结构化数据结合、高维数据的可视化问题,等等。这些问题可以通过创新的方法来解决。本书在项目实践中会涉及一些解决方法。

它是怎么与数据科学、分析和统计建模关联的

数据科学是个很宽泛的话题,其中也包含了一些数据挖掘的概念。根据之前对数据挖掘的定义,即它是从数据中发现隐藏模式,找出有意思的关联并能提供有用的决策支持的过程,可知数据挖掘是数据科学项目的子集,涉及模式识别、特征提取、聚类以及监督分类等技术。分析学和统计建模包含了很多预测模型——基于分类的模型,通过应用这些方法解决实际业务问题。数据科学、分析学和统计建模、数据挖掘这些术语之间明显是有重叠的,所以不应该把它们看作完全独立的术语。根据项目要求和特定的业务问题,它们重叠的部分可能有所不同。但总的来说,所有概念都是相关联的。数据挖掘过程也包括基于统计和机器学习方法来提取数据,提取自动化规则,也需要利用好的可视化方法来展示数据。

相关文章
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
6月前
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
|
5月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
5月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
6月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
6月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
6月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
6月前
|
SQL 数据挖掘 数据处理
R语言数据操作:使用dplyr进行数据处理的深度探索
【8月更文挑战第27天】`dplyr`包以其简洁、强大的数据处理能力,在R语言的数据分析领域占据了重要地位。通过`select()`、`filter()`、`arrange()`、`mutate()`和`summarise()`等核心函数,结合管道操作符`%>%`,我们可以轻松地完成数据筛选、排序、变换和汇总等操作。掌握`dplyr`的使用,将极大地提高我们在R语言中进行
|
9月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
9月前
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)

热门文章

最新文章