基于ACO蚁群优化算法的栅格地图避障路线规划matlab仿真

简介: 基于ACO蚁群优化算法的栅格地图避障路线规划matlab仿真

1.算法描述

   蚁群算法是通过对自然界中真实蚂蚁的集体行为的观察,模拟而得到一种仿生优化算法,它具有很好的并行性,分布性.根据蚂蚁群体不同的集体行为特征,蚁群算法可分为受蚂蚁觅食行为启发的模型和受孵化分类启发的模型,受劳动分工和协作运输启发的模型.本文重点研究了前两种蚁群算法模型. 受蚂蚁觅食行为启发的模型又称为蚁群优化算法(ACO),是继模拟退火算法,遗传算法,禁忌搜索等之后又一启发式智能优化算法.目前它已成功应用于求解TSP问题,地图着色,路径车辆调度等优化问题.本文针对蚁群算法收敛时间长,易陷入局部最优的缺点,通过对路径上信息素的更新方式作出动态调整,建立信息素平滑机制,进而使得不同路径上的信息素的更新速度有所不同,从而使改进后算法能够有效地缩短搜索的时间,并能对最终解进行优化,避免过早的陷入局部最优. 聚类是数据挖掘的重要技术之一,它可按照某种规则将数据对象划分为多个类或簇,使同一类的数据对象有较高的相似度,而不同类的数据对象差异较大.       

 算法基本思想:

(1)根据具体问题设置多只蚂蚁,分头并行搜索。

(2)每只蚂蚁完成一次周游后,在行进的路上释放信息素,信息素量与解的质量成正比。

(3)蚂蚁路径的选择根据信息素强度大小(初始信息素量设为相等),同时考虑两点之间的距离,采用随机的局部搜索策略。这使得距离较短的边,其上的信息素量较大,后来的蚂蚁选择该边的概率也较大。

(4)每只蚂蚁只能走合法路线(经过每个城市1次且仅1次),为此设置禁忌表来控制。

(5)所有蚂蚁都搜索完一次就是迭代一次,每迭代一次就对所有的边做一次信息素更新,原来的蚂蚁死掉,新的蚂蚁进行新一轮搜索。

(6)更新信息素包括原有信息素的蒸发和经过的路径上信息素的增加。

(7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。

    将各个蚂蚁随机地置于不同的出发地,对每个蚂蚁k ( k = 1 , 2 , ⋯  , m ) ,按照轮盘赌法得到下面的转移概率公式计算其下一个待访问的城市,直到所有蚂蚁访问完所有的城市。

image.png

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png

3.MATLAB核心程序

for k=1:K
    disp(k);
    for m=1:M
%%     First step: status initialization
        W=S;%set current point as the starting point
        Path=S;%initialize the passing route
        PLkm=0;%initialize the passing length
        TABUkm=ones(1,N);%initialize the forbbiden table
        TABUkm(S)=0;% eliminate this point for it is the starting point
        DD=D;%initialize adjacency matrix
%%     Second Step:Choose the nodes that can step forward
        DW=DD(W,:);
        DW1=find(DW<inf);
        for j=1:length(DW1)
            if TABUkm(DW1(j))==0
                DW(j)=inf;
            end
        end
        LJD=find(DW<inf);% set of points can be selected
        Len_LJD=length(LJD);%number of points can be selected
%%     Colony stop condition:there is no food or go into a impass
        while W~=E&&Len_LJD>=1
%%         Third Step:the method to choose the next step
            PP=zeros(1,Len_LJD);
            for i=1:Len_LJD
                PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);
            end
            PP=PP/(sum(PP));%construct probability distributing
            Pcum=cumsum(PP);
            Select=find(Pcum>=rand);
            to_visit=LJD(Select(1));%the next step node
%%         Fourth Step:status update and record
            Path=[Path,to_visit];%Paths accumulation
            PLkm=PLkm+DD(W,to_visit);%Path length accumulation
            W=to_visit;%move to the next point
            for kk=1:N
                if TABUkm(kk)==0
                    DD(W,kk)=inf;
                    DD(kk,W)=inf;
                end
            end
            TABUkm(W)=0;%eliminate the travelled point in the forbidden table
            DW=DD(W,:);
            DW1=find(DW<inf);
            for j=1:length(DW1)
                if TABUkm(DW1(j))==0
                    DW(j)=inf;
                end
            end
            LJD=find(DW<inf);%set of optional points
            Len_LJD=length(LJD);%number of optional points
        end
%%     Fifth Step:record the pate and length that every ant for every
%%     iteration passes
        ROUTES{k,m}=Path;
        if Path(end)==E
            PL(k,m)=PLkm;
        else
            PL(k,m)=inf;
        end
    end
%%    Sixth Step: update pheromone
    Delta_Tau=zeros(N,N);%initialize updating ammount
    for m=1:M
        if PL(k,m)<inf
            ROUT=ROUTES{k,m};
            TS=length(ROUT)-1;
            PL_km=PL(k,m);
            for s=1:TS
                x=ROUT(s);
                y=ROUT(s+1);
                Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;
                Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
            end
        end
    end
    Tau=(1-Rho).*Tau+Delta_Tau;%pheromone evaporates some and accumulates some
end
%% ---------------------------PLOT--------------------------------
plotif=1;%control parameter, determine if plot or not
if plotif==1
    %plot convergence curve
    meanPL=zeros(1,K);
    minPL=zeros(1,K);
    for i=1:K
        PLK=PL(i,:);
        Nonzero=find(PLK<inf);
        PLKPLK=PLK(Nonzero);
        meanPL(i)=mean(PLKPLK);
        minPL(i)=min(PLKPLK);
    end
相关文章
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
1月前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
2月前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
212 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
96 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码