基于ACO蚁群优化算法的栅格地图避障路线规划matlab仿真

简介: 基于ACO蚁群优化算法的栅格地图避障路线规划matlab仿真

1.算法描述

   蚁群算法是通过对自然界中真实蚂蚁的集体行为的观察,模拟而得到一种仿生优化算法,它具有很好的并行性,分布性.根据蚂蚁群体不同的集体行为特征,蚁群算法可分为受蚂蚁觅食行为启发的模型和受孵化分类启发的模型,受劳动分工和协作运输启发的模型.本文重点研究了前两种蚁群算法模型. 受蚂蚁觅食行为启发的模型又称为蚁群优化算法(ACO),是继模拟退火算法,遗传算法,禁忌搜索等之后又一启发式智能优化算法.目前它已成功应用于求解TSP问题,地图着色,路径车辆调度等优化问题.本文针对蚁群算法收敛时间长,易陷入局部最优的缺点,通过对路径上信息素的更新方式作出动态调整,建立信息素平滑机制,进而使得不同路径上的信息素的更新速度有所不同,从而使改进后算法能够有效地缩短搜索的时间,并能对最终解进行优化,避免过早的陷入局部最优. 聚类是数据挖掘的重要技术之一,它可按照某种规则将数据对象划分为多个类或簇,使同一类的数据对象有较高的相似度,而不同类的数据对象差异较大.       

 算法基本思想:

(1)根据具体问题设置多只蚂蚁,分头并行搜索。

(2)每只蚂蚁完成一次周游后,在行进的路上释放信息素,信息素量与解的质量成正比。

(3)蚂蚁路径的选择根据信息素强度大小(初始信息素量设为相等),同时考虑两点之间的距离,采用随机的局部搜索策略。这使得距离较短的边,其上的信息素量较大,后来的蚂蚁选择该边的概率也较大。

(4)每只蚂蚁只能走合法路线(经过每个城市1次且仅1次),为此设置禁忌表来控制。

(5)所有蚂蚁都搜索完一次就是迭代一次,每迭代一次就对所有的边做一次信息素更新,原来的蚂蚁死掉,新的蚂蚁进行新一轮搜索。

(6)更新信息素包括原有信息素的蒸发和经过的路径上信息素的增加。

(7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。

    将各个蚂蚁随机地置于不同的出发地,对每个蚂蚁k ( k = 1 , 2 , ⋯  , m ) ,按照轮盘赌法得到下面的转移概率公式计算其下一个待访问的城市,直到所有蚂蚁访问完所有的城市。

image.png

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png

3.MATLAB核心程序

for k=1:K
    disp(k);
    for m=1:M
%%     First step: status initialization
        W=S;%set current point as the starting point
        Path=S;%initialize the passing route
        PLkm=0;%initialize the passing length
        TABUkm=ones(1,N);%initialize the forbbiden table
        TABUkm(S)=0;% eliminate this point for it is the starting point
        DD=D;%initialize adjacency matrix
%%     Second Step:Choose the nodes that can step forward
        DW=DD(W,:);
        DW1=find(DW<inf);
        for j=1:length(DW1)
            if TABUkm(DW1(j))==0
                DW(j)=inf;
            end
        end
        LJD=find(DW<inf);% set of points can be selected
        Len_LJD=length(LJD);%number of points can be selected
%%     Colony stop condition:there is no food or go into a impass
        while W~=E&&Len_LJD>=1
%%         Third Step:the method to choose the next step
            PP=zeros(1,Len_LJD);
            for i=1:Len_LJD
                PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);
            end
            PP=PP/(sum(PP));%construct probability distributing
            Pcum=cumsum(PP);
            Select=find(Pcum>=rand);
            to_visit=LJD(Select(1));%the next step node
%%         Fourth Step:status update and record
            Path=[Path,to_visit];%Paths accumulation
            PLkm=PLkm+DD(W,to_visit);%Path length accumulation
            W=to_visit;%move to the next point
            for kk=1:N
                if TABUkm(kk)==0
                    DD(W,kk)=inf;
                    DD(kk,W)=inf;
                end
            end
            TABUkm(W)=0;%eliminate the travelled point in the forbidden table
            DW=DD(W,:);
            DW1=find(DW<inf);
            for j=1:length(DW1)
                if TABUkm(DW1(j))==0
                    DW(j)=inf;
                end
            end
            LJD=find(DW<inf);%set of optional points
            Len_LJD=length(LJD);%number of optional points
        end
%%     Fifth Step:record the pate and length that every ant for every
%%     iteration passes
        ROUTES{k,m}=Path;
        if Path(end)==E
            PL(k,m)=PLkm;
        else
            PL(k,m)=inf;
        end
    end
%%    Sixth Step: update pheromone
    Delta_Tau=zeros(N,N);%initialize updating ammount
    for m=1:M
        if PL(k,m)<inf
            ROUT=ROUTES{k,m};
            TS=length(ROUT)-1;
            PL_km=PL(k,m);
            for s=1:TS
                x=ROUT(s);
                y=ROUT(s+1);
                Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;
                Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
            end
        end
    end
    Tau=(1-Rho).*Tau+Delta_Tau;%pheromone evaporates some and accumulates some
end
%% ---------------------------PLOT--------------------------------
plotif=1;%control parameter, determine if plot or not
if plotif==1
    %plot convergence curve
    meanPL=zeros(1,K);
    minPL=zeros(1,K);
    for i=1:K
        PLK=PL(i,:);
        Nonzero=find(PLK<inf);
        PLKPLK=PLK(Nonzero);
        meanPL(i)=mean(PLKPLK);
        minPL(i)=min(PLKPLK);
    end
相关文章
|
3天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
9天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
8天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
9天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
9天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
10 1
|
12天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
30天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
15天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
17天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。