定位任意时刻性能问题,持续性能分析实践解析

本文涉及的产品
性能测试 PTS,5000VUM额度
可观测链路 OpenTelemetry 版,每月50GB免费额度
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 定位任意时刻性能问题,持续性能分析实践解析

作者:义泊


01 持续性能剖析简介


更好的应用性能,可以提供更好的用户体验,可以降低企业IT成本,可以让系统更稳定和可靠。在应用性能剖析技术出现以前,开发人员排查问题只能依赖各种日志和监控,这需要提前在应用代码中埋点,不但对应用代码侵入性较大且可能由于埋点不全而无法提供足够信息,诊断问题非常费时,很多时候无法找出原因。


随着应用性能剖析技术出现,开发人员可以很方便的找出应用程序性能瓶颈(如CPU利用率高、内存占用高等),从而进行优化。但由于早期应用性能剖析技术开销较大,只能在开发环境而不能在生产长时间开启,生产环境出问题时很可能没有被记录下来,开发人员在开发环境模拟和复现问题很困难,导致解决问题的效率很低,也很有可能无法解决。


近些年来,性能剖析技术持续发展,功能越来越丰富,开销也显著改善,达到生产环境持续开启水准,不过离广泛普及还存在诸多障碍。性能剖析一般过程有三步:生产环境抓取、保存性能剖析文件、性能剖析文件可视化。当应用体量较大时,这3个步骤每步都存在着难度,需要解决大量计算、存储、产品设计等多方面问题。


ARMS Continuous Profiler[1]应运而生,由阿里云ARMS(应用实时监控服务[2])团队和Dragonwell[3]团队联合研发。它基于当前最成熟的性能剖析技术,将整个性能剖析过程产品化,适合在生成环境持续开启。与常规性能剖析相比,ARMS Continuous Profiler增加时间维度,核心功能如下:

  • 定位任意时刻的性能问题(比如CPU占用高、内存占用高)
  • 支持两个时段的性能对比,找出应用演进过程中的性能差异
  • 观测应用的调用栈,以便更好的审视和理解代码设计


02 ARMS 持续性能分析功能演示


我们举例来说明如何用ARMS持续性能分析来解决问题。


常见场景一:CPU 热点解析

  • 问题现象

以某图书馆的服务应用举例,其Java进程占用大量CPU,接口响应时间达到了十多秒,应用性能很差。

image.png

image.png

image.png

  • 找出热点方法

因为当前应用CPU占用很高,因此我们直接在性能分析类型中选择CPU Time菜单路径:ARMS控制台 -> 应用首页 -> 应用诊断 -> CPU&内存诊断

image.png

image.png

从火焰图我们可以看到,java.util.LinedList.node(int)方法占用了85%的CPU,对应的业务代码方法是DemoController.countAllBookPages(List),结合代码,可以发现,这个方法对于对象很多的集合性能很差,因为要从头或者从尾部逐个遍历。image.png

  • 修复问题

定位到原因后,我们可以通过两个解决方案进行修复。第一个方法是将LinkedList修改为下标访问方式更高效的ArrayList

image.png

第二个方法是将LinkedList的遍历算法从普通for循环修改为增强的for循环

image.png

  • 性能验证

将修复后的代码重新部署,以相同压力分别压测两种方案,可以看到接口响应时间显著下降,Java进程CPU利用率显著下降。

image.png

image.png


常见场景二:内存申请热点

  • 问题现象

以某图书馆的服务应用举例,其Java进程占用大量CPU,接口响应时间达到十多秒,应用性能很差。

image.png

image.png

image.png


  • 找出热点方法

因为当前应用CPU占用很高,我们直接在性能分析类型中选择:CPU Time菜单路径:ARMS控制台 -> 应用首页 -> 应用诊断 -> CPU&内存诊断

image.png

image.png

从CPU热点方法,我们发现Java进程89%的时间都在做GC,说明应用存在很大的内存压力。我们下一步选择内存热点剖析。

image.png

image.png

从上图的内存申请热点火焰图,我们可以找到过去一段时间所有内存申请中,DemoController.queryAllBooks方法占了99%,进一步检查,可以发现业务代码创建了2万个大对象并保存到了List。

注:这个方法本来应该从数据库中读取2万本书,这里进行了简化,但效果相同,都是在堆中创建了一个占用大量内存的List

image.png

  • 修复问题

这个接口本来想实现的是按分页查询书籍列表,但由于实现错误,误将所有书籍都查出来了然后最终只返回了指定分页的部分,所以可以直接从数据库中用分页的方式查询,这样就可以避免大量的Java内存占用。

image.png

  • 性能验证

将修复后的代码重新部署,以前相同压力进行压测,可以看到接口响应时间显著下降,Java进程CPU利用率显著下降。

image.png03

image.png


03 ARMS 持续性能分析的设计和实现


1、产品设计

产品整体分为3个部分,第一个部分负责在应用端收集性能剖析数据,第二个部分用于传输和存储剖析结果文件,第三部分用于查询和展示。

image.png

第一个部分主要使用Java Flight Recorder[4]async-profiler[5],我们会根据Java版本情况自动选择其一,其核心功能是周期性对应用程序进行采样,并且不会因为安全点问题导致结果不准确。下图是对一个线程采样6次的例子,可以看到每次采样瞬间的调用栈。最终保存为JFR格式的文件。

image.png

第二个部分比较重要的是JFR Analyzer,其核心功能是读取JFR文件,对其进行解析、计算和聚合,最终生成便于查询和展示的中间结果。第三个部分的核心功能是将剖析结果展示为表格或火焰图,也要支持对比能力。

2、Java Flight Recorder

JFR是OpenJDK内置的低开销监控和性能剖析工具,深度集成在虚拟机各个角落。当Oracle在OpenJDK11上开源JDK Flight Recorder之后,阿里巴巴也是作为主要贡献者,与RedHat等社区贡献者一起将 JFR 移植到OpenJDK 8。


JFR由两个部分组成:第1个部分分布在虚拟机各个关键路径上,负责捕获信息。

第2个部分是虚拟机内单独模块,负责接收和存储第1个部分产生的数据,这些数据通常也叫做事件。

JFR包含160种以上事件,JFR事件包含很多有用的上下文信息及时间戳。比如方法执行调用栈、文件访问、特定GC阶段的发生,或特定GC阶段、耗时。

image.png

image.png


3、async-profiler

async-profiler是一个低开销的Java性能剖析工具,依靠JVM的特定API进行CPU和内存申请的剖析。


因为OracleJDK 8上JFR功能是商业特性,所以在OracleJDK8上我们用async-profiler作为替换技术,实现相同剖析能力。而对于OpenJDK8,由于内存申请热点剖析功能存在较大性能开销,我们也用async-profiler作为替代技术。


async-profiler使用C++开发,以动态库方式加载到JVM进程中,支持生成JFR格式文件,这样不论我们用JFR还是async-profiler,因为文件格式相同,所以分析和存储方案都可以复用。

image.png

4、JFR File Analyzer

JFR File Analyzer的输入是JFR文件,输出是一种支持按时间范围高效查询的树状结构。一个JFR文件中可以包含CPU热点、内存申请热点等多个方面的数据,每个方面都有对应的解析和存储实现。

image.png04

04 总结


本文介绍了持续性能剖析的产生背景,通过两个例子演示了ARMS Continuous Profiler的实际使用场景,也对ARMS Continuous Profiler的设计和核心模块进行了介绍,其主要特点如下:

image.png

image.png

对ARMS Continuous Profiler感兴趣的读者,可以加入专属服务钉群,或者阅读产品文档,欢迎试用和交流。

👉 专属服务钉群:22560019672

image.png

📒 文档:https://help.aliyun.com/document_detail/473143.html05


05 相关链接


[1] ARMS Continuous Profiler

https://help.aliyun.com/document_detail/473143.html

[2] 应用实时监控服务

https://help.aliyun.com/product/34364.html

[3] Dragonwell

https://dragonwell-jdk.io/#/index

[4] Java Flight Recorder

https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm

[5] async-profiler

https://github.com/async-profiler/async-profiler

image.png

相关文章
|
4天前
|
监控 数据挖掘 OLAP
深入解析:AnalyticDB中的高级查询优化与性能调优
【10月更文挑战第22天】 AnalyticDB(ADB)是阿里云推出的一款实时OLAP数据库服务,它能够处理大规模的数据分析任务,提供亚秒级的查询响应时间。对于已经熟悉AnalyticDB基本操作的用户来说,如何通过查询优化和性能调优来提高数据处理效率,是进一步提升系统性能的关键。本文将从个人的角度出发,结合实际经验,深入探讨AnalyticDB中的高级查询优化与性能调优技巧。
17 4
|
2月前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析
本文是“Java学习路线”专栏的导航文章,目标是为Java初学者和初中高级工程师提供一套完整的Java学习路线。
335 37
|
18天前
|
存储 缓存 监控
深入解析:Elasticsearch集群性能调优策略与最佳实践
【10月更文挑战第8天】Elasticsearch 是一个分布式的、基于 RESTful 风格的搜索和数据分析引擎,它能够快速地存储、搜索和分析大量数据。随着企业对实时数据处理需求的增长,Elasticsearch 被广泛应用于日志分析、全文搜索、安全信息和事件管理(SIEM)等领域。然而,为了确保 Elasticsearch 集群能够高效运行并满足业务需求,需要进行一系列的性能调优工作。
39 3
|
20天前
|
Web App开发 前端开发 测试技术
Selenium 4新特性解析:关联定位器及其他创新功能
【10月更文挑战第6天】Selenium 是一个强大的自动化测试工具,广泛用于Web应用程序的测试。随着Selenium 4的发布,它引入了许多新特性和改进,使得编写和维护自动化脚本变得更加容易。本文将深入探讨Selenium 4的一些关键新特性,特别是关联定位器(Relative Locators),以及其他一些重要的创新功能。
97 2
|
21天前
|
存储 数据处理 Python
深入解析Python中的生成器:效率与性能的双重提升
生成器不仅是Python中的一个高级特性,它们是构建高效、内存友好型应用程序的基石。本文将深入探讨生成器的内部机制,揭示它们如何通过惰性计算和迭代器协议提高数据处理的效率。
|
27天前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
38 9
|
2月前
|
缓存 Java 应用服务中间件
Java虚拟线程探究与性能解析
本文主要介绍了阿里云在Java-虚拟-线程任务中的新进展和技术细节。
|
2月前
|
物联网 5G UED
深入解析载波聚合及其对无线通信性能的提升
深入解析载波聚合及其对无线通信性能的提升
72 1
|
2月前
|
监控 算法 数据可视化
深入解析Android应用开发中的高效内存管理策略在移动应用开发领域,Android平台因其开放性和灵活性备受开发者青睐。然而,随之而来的是内存管理的复杂性,这对开发者提出了更高的要求。高效的内存管理不仅能够提升应用的性能,还能有效避免因内存泄漏导致的应用崩溃。本文将探讨Android应用开发中的内存管理问题,并提供一系列实用的优化策略,帮助开发者打造更稳定、更高效的应用。
在Android开发中,内存管理是一个绕不开的话题。良好的内存管理机制不仅可以提高应用的运行效率,还能有效预防内存泄漏和过度消耗,从而延长电池寿命并提升用户体验。本文从Android内存管理的基本原理出发,详细讨论了几种常见的内存管理技巧,包括内存泄漏的检测与修复、内存分配与回收的优化方法,以及如何通过合理的编程习惯减少内存开销。通过对这些内容的阐述,旨在为Android开发者提供一套系统化的内存优化指南,助力开发出更加流畅稳定的应用。
67 0
|
3月前
|
开发者 云计算 数据库
从桌面跃升至云端的华丽转身:深入解析如何运用WinForms与Azure的强大组合,解锁传统应用向现代化分布式系统演变的秘密,实现性能与安全性的双重飞跃——你不可不知的开发新模式
【8月更文挑战第31天】在数字化转型浪潮中,传统桌面应用面临新挑战。本文探讨如何融合Windows Forms(WinForms)与Microsoft Azure,助力应用向云端转型。通过Azure的虚拟机、容器及无服务器计算,可轻松解决性能瓶颈,满足全球用户需求。文中还提供了连接Azure数据库的示例代码,并介绍了集成Azure Storage和Functions的方法。尽管存在安全性、网络延迟及成本等问题,但合理设计架构可有效应对,帮助开发者构建高效可靠的现代应用。
30 0

推荐镜像

更多