自动驾驶:BEVDet

简介: 自动驾驶:BEVDet

Introduction

作者通过现有的算法(LSS)、独特的数据增强方案与新的NMS方案整合了一个BEV框架(BEVDet)。
如下图:
在这里插入图片描述
这个框架分为四部分:

  1. Image-view-Encoder(Backbone + neck)。
  2. View Transformer(这就是LSS的lift与splat)。
  3. BEV Encoder (得到BEV特征在通过CNN或者attention提取bev特征)。
  4. Head。

在实验中,BEVDet很好的权衡了检测准确度和时间效率。在nuScenes val集上时,作为快速版本的BEVDet-Tiny的得分为31.2% mAP和39.2% NDS。与FCOS3D相比,BEVDet只需要215.3 GFLOPs 的计算开销, 是FCOS3D11%);运行速度每秒15.6帧,比FCOS3D快9.2倍。另一个高精度版本 BEVDet-Base评分为39.3% mAP和47.2% NDS, 显著地超过所有已发表的结果。在一个相当快的推理速度下,它与FCOS3D相比,mAP 提升了9.8%, NDS 提升了10.0%。

Methodolo

Data Augmentation

坐标转换公式:
在这里插入图片描述

作者在训练途中遇到了严重的over- fitting ,因为在nusuense 数据集下每个场景有6个cam组成,这六个中必然会有交叉的场景重复出现。

另一方面,基于图像视图编码器的批处理大小是子序列模块的N倍。训练数据的不足也是导致在基于BEV空间中学习过拟合的一部分原因。

作者起初想用一些数据增强的方法来缓解过拟合,但是这种方法只在没有bev的时候很work,因为假如我所有的2d image 都做了翻转(所有image做了相同角度的倾斜),由于后面需要把feature融入视锥,而视锥没有倾斜,这样会导致空间分布不一致,造成不必要的噪声。

公式表示如下:
假设本来的pixel 坐标为:
在这里插入图片描述

本来的 3d voxel 坐标为:

在这里插入图片描述

image 数据增强后:
在这里插入图片描述
但是这是3d voxel坐标他是没发生变化的,因为它是在生成视锥是根据原图确定的,而数据增强是在训练阶段进行的,他们没有做到同步。

于是我们需要对它3d voxel 进行逆矩阵变换使得2d 3d 空间分布一致(也就是还是符合通过内外参数的光学成像对应关系), 公式如下:
在这里插入图片描述

Network Structure

这里大家直接看图,简单明了。

在这里插入图片描述

Scale-NMS

在这里插入图片描述

BEV空间中不同类别的空间分布与图像视图空间中的空间分布截然不同。在图像视图空间中,由于相机的透视成像机制,所有类别共享相似的空间分布。因此,对于经典的NMS策略对于不同的类别都采用相同的阈值来来筛选预测结果。(例如在2D目标检测中,任何两个实例的bounding box的IOU值总是低于0.5)

然而,在BEV空间中,各个类的占用面积本质上是不同的,实例之间的重叠应接近于零。因此,预测结果之间的IOU分布因类别而异。

比如行人和锥型交通路标在接地面上占用很小的面积,这总是小于算法的输出分辨率。常见的对象检测范式冗余地生成预测。每个物体的占地面积小,可能使冗余结果与真正结果没有交集。这将使依赖正样本和负样本之间空间关系(IOU)的经典NMS失效。

解决方法:
Scale-NMS在执行经典NMS算法之前,根据每个对象的类别缩放其大小。通过这种方式,调整正样例和冗余结果之间的IOU分布,以与经典NMS匹配。缩放因子是特定于类别的。它们是通过对验证集进行超参数搜索生成的。

实验

在这里插入图片描述

目录
相关文章
|
8月前
|
自动驾驶 算法 定位技术
为什么自动驾驶永远离不开C++?
为什么自动驾驶永远离不开C++?
148 0
|
7月前
|
机器学习/深度学习 传感器 自动驾驶
探讨深度学习在自动驾驶中的应用,以及它如何推动自动驾驶技术的发展
【6月更文挑战第13天】本文探讨了深度学习在自动驾驶汽车中的核心应用,涉及环境感知、决策规划和控制执行。深度学习通过模拟神经元工作方式处理传感器数据,如使用CNN和RNN识别图像和雷达信息。此外,它助力智能决策规划和精确控制执行。然而,数据需求、可解释性和实时性是当前挑战,可通过数据增强、规则方法、模型压缩等手段解决。随着技术发展,深度学习将进一步提升自动驾驶性能,并应对安全和隐私挑战。
247 5
|
2月前
|
传感器 人工智能 自动驾驶
人工智能在自动驾驶汽车中的应用
【10月更文挑战第31天】人工智能在自动驾驶汽车中的应用是科技进步与汽车产业转型的产物。通过计算机视觉、雷达、LiDAR和超声波传感器等技术,自动驾驶汽车实现了精准感知;借助复杂AI算法,实现决策与控制、路径规划与导航。尽管面临技术成熟度、法规与伦理、公众接受度等挑战,但未来自动驾驶汽车有望在全球范围内实现商业化普及,彻底改变出行方式,提高道路安全,减少交通拥堵,促进绿色出行。
|
6月前
|
传感器 监控 自动驾驶
无人驾驶汽车已成为自动驾驶技术领域的热点
无人驾驶汽车已成为自动驾驶技术领域的热点
无人驾驶汽车已成为自动驾驶技术领域的热点
|
7月前
|
传感器 机器学习/深度学习 自动驾驶
自动驾驶技术
自动驾驶技术简介
|
8月前
|
传感器 机器学习/深度学习 自动驾驶
自动驾驶中的感知模型:实现安全和智能驾驶的关键
自动驾驶中的感知模型:实现安全和智能驾驶的关键
174 9
|
8月前
|
传感器 自动驾驶 安全
深入探讨自动驾驶感知技术:实现无人驾驶的关键
深入探讨自动驾驶感知技术:实现无人驾驶的关键
299 5
|
机器学习/深度学习 传感器 自动驾驶
自动驾驶技术3
自动驾驶技术3
81 1
|
机器学习/深度学习 传感器 自动驾驶
自动驾驶技术1
自动驾驶技术1
74 1
|
机器学习/深度学习 传感器 自动驾驶
自动驾驶技术2
自动驾驶技术2
62 1