HDFS的特点、三个服务、架构

简介: 一、高可靠性:hadoop一般都在成千的计算机集群之上,且可以搭建hadoop的高可靠集群,及内部容错功能优秀。二、高扩展性:hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。三、高效性:hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。四、高容错性:Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。#### 缺点:

你的点赞与评论是我最大的创作动力!

在这里插入图片描述

优点:

一、高可靠性:hadoop一般都在成千的计算机集群之上,且可以搭建hadoop的高可靠集群,及内部容错功能优秀。
二、高扩展性:hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
三、高效性:hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
四、高容错性:Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

缺点:

一、不适合低延迟数据访问
二、无法高效存储大量小文件
三、不支持多用户写入及任意修改文件

HDFS三个服务

1.namenode (metadata 元数据)
2.secondary namenode
3.datanode

区分两个概念:

数据:数据内容
元数据:文件名称、大小、所属人 、地址

HDFS架构

NameNode
  • Namenode是一个中心服务器,单一节点(简化系统的设计和实现),负责管理文件系统的名字空间(namespase)以及客户端对文件的访问。
  • 文件操作:NameNode负责文件元数据的操作,DataNode负责处理文件内容的读写请求,跟文件内容相关的数据流不经过NameNode,只会询问它跟那个DataNode联系,否则NameNode会成为系统的瓶颈。
  • 副本存放在那些DataNode上由NameNode来控制,根据全局情况做出块放置决定,读取文件时NameNode尽量让用户先读取最近的副本,降低带块消耗和读取延时。
  • NameNode全权管理数据块的复制,它周期性地从集群中的每个Datanode接收心跳信号和块状态报告(Blockreport)。接收到心跳信号意味着该Datanode节点工作正常。块状态报告包含了一个该Datanode上所有数据块的列表。
DataNode
  • 一个数据块在DataNode是以文件存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。
  • DataNode启动后向NameNode注册,通过后,周期性(1小时)的向NameNode上报所有的块信息。
  • 心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令,如复制块数据到另一台机器,或者删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。
  • 集群运行中可以安全加入和退出一些机器。

HDFS文件权限

  • 与linux文件权限类似
  • r:read; w:write: x:execute, 权限x对于文件忽略,对于文件夹表示是否允许访问其内容。
  • 如果linux系统用户Bob使用hadoop命令创建一个文件,那么这个文件在HDFS中所有者就是Bob
  • HDFS的权限目的:阻止好人做错事,而不是阻止坏人做坏事。HDFS相信,你告诉我你是谁,我就认为你是谁。
目录
相关文章
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
195 6
|
2月前
|
Cloud Native Java API
聊聊从单体到微服务架构服务演化过程
本文介绍了从单体应用到微服务再到云原生架构的演进过程。单体应用虽易于搭建和部署,但难以局部更新;面向服务架构(SOA)通过模块化和服务总线提升了组件复用性和分布式部署能力;微服务则进一步实现了服务的独立开发与部署,提高了灵活性;云原生架构则利用容器化、微服务和自动化工具,实现了应用在动态环境中的弹性扩展与高效管理。这一演进体现了软件架构向着更灵活、更高效的方向发展。
|
3月前
|
存储 Linux KVM
Proxmox VE (PVE) 主要架构和重要服务介绍
Proxmox VE (PVE) 是一款开源的虚拟化平台,它基于 KVM (Kernel-based Virtual Machine) 和 LXC (Linux Containers) 技术,支持虚拟机和容器的运行。PVE 还提供高可用集群管理、软件定义存储、备份和恢复以及网络管理等企业级功能。
1384 7
|
9天前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
44 11
|
1月前
|
Kubernetes Cloud Native Docker
云原生之旅:从传统架构到容器化服务的演变
随着技术的快速发展,云计算已经从简单的虚拟化服务演进到了更加灵活和高效的云原生时代。本文将带你了解云原生的概念、优势以及如何通过容器化技术实现应用的快速部署和扩展。我们将以一个简单的Python Web应用为例,展示如何利用Docker容器进行打包和部署,进而探索Kubernetes如何管理这些容器,确保服务的高可用性和弹性伸缩。
|
2月前
|
消息中间件 Kafka 数据库
微服务架构中,如何确保服务之间的数据一致性?
微服务架构中,如何确保服务之间的数据一致性?
|
1月前
|
存储 缓存 分布式计算
【赵渝强老师】基于RBF的HDFS联邦架构
最新版Hadoop实现了基于Router的联盟架构,增强了集群管理能力。Router将挂载表从客户端中分离,解决了ViewFS的问题。RBF架构包括Router和State Store两个模块,其中Router作为代理服务,负责解析ViewFS并转发请求至正确子集群,State Store则维护子集群的状态和挂载表信息。
|
1月前
|
存储 分布式计算 负载均衡
【赵渝强老师】基于ViewFS的HDFS联邦架构
本文介绍了HDFS联盟(Federation)的概念及其在大数据存储中的应用。HDFS联盟通过允许多个NameNode管理不同的命名空间,实现了负载均衡和NameNode的水平扩展。文章还详细解释了基于ViewFS的联盟架构,以及该方案的局限性。附带的视频进一步讲解了相关概念。
|
2月前
|
存储 分布式计算 druid
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
72 3
|
23天前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。

热门文章

最新文章