MATLAB--数字图像处理 图像直方图均衡化

简介: MATLAB--数字图像处理 图像直方图均衡化

图像直方图均衡化

首先,我们要理解什么是图像直方图均衡化:

把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布,具体见下图(说的简单点,就是把原来的图像的灰度分配均匀,使得0-255都有一定的取值,这样对比度相对大一些,视觉上更好看一点):在这里插入图片描述
这里我们可以直接利用histeq()、adapthisteq()函数对图像进行均衡化

 H= imread('a1.jpg'); 
if length(size(H))>2
    H=rgb2gray(H);  
end
subplot(3,2,1);  
imshow(H); title('原图');  
subplot(3,2,2);  
imhist(H); title('原图直方图');  
subplot(3,2,3);  
H1=adapthisteq(H);  
imshow(H1); title('adapthisteq均衡后图');  
subplot(3,2,4);  
imhist(H1);title('adapthisteq均衡后直方图');  
subplot(3,2,5);  
H2=histeq(H);  
imshow(H2); title('histeq均衡后图');  
subplot(3,2,6);  
imhist(H1); title('histeq均衡后直方图'); 

效果图:
在这里插入图片描述

当然,我们也可以自己编写均衡化函数,首先就要了解均衡化的算法步骤(这里我就不多说了)
上代码:

H= imread('a1.jpg'); 

%判断是否为三通道彩色图片 若是 则将其灰度化
if length(size(H))>2
    H=rgb2gray(H);  
end

%获取图片的尺寸 便于计算总像素数 即m*n 
[m,n]=size(H);  

%生成一个一行256列的矩阵
p=zeros(1,256);  

% 统计各灰度的像素个数 
%find(H==i) 是在图像矩阵里面寻找灰度为i的点坐标 
% 因为矩阵是从1开始的 所以为p(i+1)
for i=0:255  
   p(i+1)=length(find(H==i))/(m*n);  
end  


subplot(2,2,1);  
imshow(H);  
title('原图');  
subplot(2,2,2);  
% 显示原图的直方图
bar(0:255,p,'b');  
title('原图直方图');  
 
 % 利用循环 累加概率值
s=zeros(1,256);  
for i=1:256  
     for j=1:i  
         s(i)=p(j)+s(i);                  
     end  
end  

%对s中的数先乘以255,再取整   
a=round(s*255);  
b=H;  
%更新原图像的灰度
for i=0:255  
     b(find(H==i))=a(i+1);                
end
  
subplot(2,2,3);  
imshow(b)                            
title('均衡化后图像');  
 %统计更新后的概率
for i=0:255  
    GPeq(i+1)=sum(p(find(a==i)));            
end  
subplot(2,2,4);  
bar(0:255,GPeq,'b'); title('均衡化后的直方图'); 

效果图:
在这里插入图片描述

方法二(从大佬那里copy的)

Img= imread('a1.jpg'); 
if length(size(Img))>2
    Img=rgb2gray(Img);  
end
 
%绘制原始图像的直方图
[height,width]=size(Img);  
[counts1, x] = imhist(Img,256);  
counts2 = counts1/height/width;
figure(1),
subplot(1,2,1),
imshow(Img);title('原始图像');
subplot(1,2,2),
stem(x, counts2); title('原始图像直方图');
 
%统计每个灰度的像素值累计数目
NumPixel = zeros(1,256);%统计各灰度数目,共256个灰度级  
for i = 1:height  
    for j = 1: width  
    %对应灰度值像素点数量+1  
    %NumPixel的下标是从1开始,而图像像素的取值范围是0~255,所以用NumPixel(Img(i,j) + 1)  
    NumPixel(Img(i,j) + 1) = NumPixel(Img(i,j) + 1) + 1;  
    end  
end  
 
%将频数值算为频率
ProbPixel = zeros(1,256);  
for i = 1:256  
    ProbPixel(i) = NumPixel(i) / (height * width * 1.0);  
end  
 
%函数cumsum来计算cdf,并将频率(取值范围是0.0~1.0)映射到0~255的无符号整数
CumuPixel = cumsum(ProbPixel);  
CumuPixel = uint8(255 .* CumuPixel + 0.5); 
 
%直方图均衡。赋值语句右端,Img(i,j)被用来作为CumuPixel的索引
for i = 1:height  
    for j = 1: width  
        Img(i,j) = CumuPixel(Img(i,j)+1);  
    end  
end  
 
%显示更新后的直方图
figure(2),
subplot(1,2,1),
imshow(Img); title('直方图均衡化图像'); 
[counts1, x] = imhist(Img,256);  
counts2 = counts1/height/width;  
subplot(1,2,2),
stem(x, counts2); title('直方图均衡化后图像的直方图');

上面都是对灰度图片进行均衡化,那么对彩色图片怎么均衡化呢?办法肯定是有的。我们知道,彩色图片无非就是RGB三通道组成的,只要我们分别对三个通道进行均衡化,再合成,得到的图片就是彩色的,均衡化后的。
上代码:

Img= imread('a1.jpg'); 
OutImg=Img;
%分别提取三通道的信息
R = Img(:,:,1);  
G = Img(:,:,2);  
B = Img(:,:,3);  

%分别对三通道的图片进行均衡化 
R = histeq(R, 256);  
G = histeq(G, 256);  
B = histeq(B, 256);  
 
 %最后合成为一张图片
OutImg(:,:,1) = R;  
OutImg(:,:,2) = G;  
OutImg(:,:,3) = B;  
 
figure,
subplot(1,2,1),
imshow(Img);title('原始图像');
subplot(1,2,2),
imshow(OutImg); title('均衡化后结果');

效果图(感觉颜色更加丰富了,哈哈):
在这里插入图片描述
这里其实还有一种方法,就是先把RGB转换为HSV,再均衡化
上代码:

mg= imread('a1.jpg'); 
hsvImg = rgb2hsv(Img);  
V=hsvImg(:,:,3);  
[height,width]=size(V);  
 
V = uint8(V*255);  
NumPixel = zeros(1,256);  
for i = 1:height  
    for j = 1: width  
    NumPixel(V(i,j) + 1) = NumPixel(V(i,j) + 1) + 1;  
    end  
end  
 
ProbPixel = zeros(1,256);  
for i = 1:256  
    ProbPixel(i) = NumPixel(i) / (height * width * 1.0);  
end  
 
CumuPixel = cumsum(ProbPixel);  
CumuPixel = uint8(255 .* CumuPixel + 0.5);  
 
for i = 1:height  
    for j = 1: width  
        V(i,j) = CumuPixel(V(i,j)+1);  %注意,这里需要+1,要不然会出问题
    end  
end  
 
V = im2double(V);  
hsvImg(:,:,3) = V;  
outputImg = hsv2rgb(hsvImg);  
figure,
subplot(1,2,1),
imshow(Img);title('原始图像');
subplot(1,2,2),
imshow(outputImg); title('在HSV空间均衡化后结果');

效果图(感觉没有上一种方法好看,这个其实是要分图片的):
在这里插入图片描述

目录
相关文章
|
7天前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
27天前
|
机器学习/深度学习 编解码 Android开发
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
30 0
|
2月前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
3月前
|
机器学习/深度学习 算法 固态存储
m基于深度学习的卫星遥感图像轮船检测系统matlab仿真,带GUI操作界面
在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。
326 8
|
3月前
|
算法 计算机视觉 异构计算
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
|
3月前
|
算法 计算机视觉
基于Chan-Vese算法的图像边缘提取matlab仿真
**算法预览展示了4幅图像,从边缘检测到最终分割,体现了在matlab2022a中应用的Chan-Vese水平集迭代过程。核心代码段用于更新水平集并显示迭代效果,最后生成分割结果及误差曲线。Chan-Vese模型(2001)是图像分割的经典方法,通过最小化能量函数自动检测平滑区域和清晰边界的图像分割,适用于复杂环境,广泛应用于医学影像和机器视觉。**
|
3月前
|
算法 计算机视觉 异构计算
基于FPGA的图像直方图均衡化处理verilog实现,包含tb测试文件和MATLAB辅助验证
摘要: 在FPGA上实现了图像直方图均衡化算法,通过MATLAB2022a与Vivado2019.2进行仿真和验证。核心程序涉及灰度直方图计算、累积分布及映射变换。算法旨在提升图像全局对比度,尤其适合低对比度图像。FPGA利用可编程增益器和查表技术加速硬件处理,实现像素灰度的均匀重分布,提升视觉效果。![image preview](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_a075525027db4afbb9c0529921fd0152.png)
|
1月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
102 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
1月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
68 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
1月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
57 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章

下一篇
DDNS