【LeetCode】 51. N皇后问题

简介: N皇后问题

51. N皇后

力扣题目链接

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例 1:

  • 输入:n = 4
  • 输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
  • 解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

  • 输入:n = 1
  • 输出:[["Q"]]

思路

都知道n皇后问题是回溯算法解决的经典问题,但是用回溯解决多了组合、切割、子集、排列问题之后,遇到这种二维矩阵还会有点不知所措。

首先来看一下皇后们的约束条件:

  1. 不能同行
  2. 不能同列
  3. 不能同斜线

确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。

下面我用一个 3 * 3 的棋盘,将搜索过程抽象为一棵树,如图:

51.N皇后

从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。

那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了

回溯三部曲

按照我总结的如下回溯模板,我们来依次分析:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }
    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}
  • 递归函数参数

我依然是定义全局变量二维数组result来记录最终结果。

参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。

代码如下:

vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
  • 递归终止条件

在如下树形结构中:
51.N皇后

可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。

代码如下:

if (row == n) {
    result.push_back(chessboard);
    return;
}
  • 单层搜索的逻辑

递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。

每次都是要从新的一行的起始位置开始搜,所以都是从0开始。

代码如下:

for (int col = 0; col < n; col++) {
    if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
        chessboard[row][col] = 'Q'; // 放置皇后
        backtracking(n, row + 1, chessboard);
        chessboard[row][col] = '.'; // 回溯,撤销皇后
    }
}
  • 验证棋盘是否合法

按照如下标准去重:

  1. 不能同行
  2. 不能同列
  3. 不能同斜线 (45度和135度角)

代码如下:

bool isValid(int row, int col, vector<string>& chessboard, int n) {
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}

在这份代码中,细心的同学可以发现为什么没有在同行进行检查呢?

因为在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以不用去重了。

那么按照这个模板不难写出如下C++代码:

class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {
    if (row == n) {
        result.push_back(chessboard);
        return;
    }
    for (int col = 0; col < n; col++) {
        if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
            chessboard[row][col] = 'Q'; // 放置皇后
            backtracking(n, row + 1, chessboard);
            chessboard[row][col] = '.'; // 回溯,撤销皇后
        }
    }
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}
public:
    vector<vector<string>> solveNQueens(int n) {
        result.clear();
        std::vector<std::string> chessboard(n, std::string(n, '.'));
        backtracking(n, 0, chessboard);
        return result;
    }
};

可以看出,除了验证棋盘合法性的代码,省下来部分就是按照回溯法模板来的。

总结

本题是我们解决棋盘问题的第一道题目。

如果从来没有接触过N皇后问题的同学看着这样的题会感觉无从下手,可能知道要用回溯法,但也不知道该怎么去搜。

这里我明确给出了棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了

大家可以在仔细体会体会!

其他语言补充

Java

class Solution {
    List<List<String>> res = new ArrayList<>();

    public List<List<String>> solveNQueens(int n) {
        char[][] chessboard = new char[n][n];
        for (char[] c : chessboard) {
            Arrays.fill(c, '.');
        }
        backTrack(n, 0, chessboard);
        return res;
    }


    public void backTrack(int n, int row, char[][] chessboard) {
        if (row == n) {
            res.add(Array2List(chessboard));
            return;
        }

        for (int col = 0;col < n; ++col) {
            if (isValid (row, col, n, chessboard)) {
                chessboard[row][col] = 'Q';
                backTrack(n, row+1, chessboard);
                chessboard[row][col] = '.';
            }
        }

    }


    public List Array2List(char[][] chessboard) {
        List<String> list = new ArrayList<>();

        for (char[] c : chessboard) {
            list.add(String.copyValueOf(c));
        }
        return list;
    }


    public boolean isValid(int row, int col, int n, char[][] chessboard) {
        // 检查列
        for (int i=0; i<row; ++i) { // 相当于剪枝
            if (chessboard[i][col] == 'Q') {
                return false;
            }
        }

        // 检查45度对角线
        for (int i=row-1, j=col-1; i>=0 && j>=0; i--, j--) {
            if (chessboard[i][j] == 'Q') {
                return false;
            }
        }

        // 检查135度对角线
        for (int i=row-1, j=col+1; i>=0 && j<=n-1; i--, j++) {
            if (chessboard[i][j] == 'Q') {
                return false;
            }
        }
        return true;
    }
}
// 方法2:使用boolean数组表示已经占用的直(斜)线
class Solution {
    List<List<String>> res = new ArrayList<>();
    boolean[] usedCol, usedDiag45, usedDiag135;    // boolean数组中的每个元素代表一条直(斜)线
    public List<List<String>> solveNQueens(int n) {
        usedCol = new boolean[n];                  // 列方向的直线条数为 n
        usedDiag45 = new boolean[2 * n - 1];       // 45°方向的斜线条数为 2 * n - 1
        usedDiag135 = new boolean[2 * n - 1];      // 135°方向的斜线条数为 2 * n - 1
        //用于收集结果, 元素的index表示棋盘的row,元素的value代表棋盘的column
        int[] board = new int[n];
        backTracking(board, n, 0);
        return res;
    }
    private void backTracking(int[] board, int n, int row) {
        if (row == n) {
            //收集结果
            List<String> temp = new ArrayList<>();
            for (int i : board) {
                char[] str = new char[n];
                Arrays.fill(str, '.');
                str[i] = 'Q';
                temp.add(new String(str));
            }
            res.add(temp);
            return;
        }

        for (int col = 0; col < n; col++) {
            if (usedCol[col] | usedDiag45[row + col] | usedDiag135[row - col + n - 1]) {
                continue;
            }
            board[row] = col;
            // 标记该列出现过
            usedCol[col] = true;
            // 同一45°斜线上元素的row + col为定值, 且各不相同
            usedDiag45[row + col] = true;
            // 同一135°斜线上元素row - col为定值, 且各不相同
            // row - col 值有正有负, 加 n - 1 是为了对齐零点
            usedDiag135[row - col + n - 1] = true;
            // 递归
            backTracking(board, n, row + 1);
            usedCol[col] = false;
            usedDiag45[row + col] = false;
            usedDiag135[row - col + n - 1] = false;
        }
    }
}

Python

class Solution:
    def solveNQueens(self, n: int) -> List[List[str]]:
        if not n: return []
        board = [['.'] * n for _ in range(n)]
        res = []
        def isVaild(board,row, col):
            #判断同一列是否冲突
            for i in range(len(board)):
                if board[i][col] == 'Q':
                    return False
            # 判断左上角是否冲突
            i = row -1
            j = col -1
            while i>=0 and j>=0:
                if board[i][j] == 'Q':
                    return False
                i -= 1
                j -= 1
            # 判断右上角是否冲突
            i = row - 1
            j = col + 1
            while i>=0 and j < len(board):
                if board[i][j] == 'Q':
                    return False
                i -= 1
                j += 1
            return True

        def backtracking(board, row, n):
            # 如果走到最后一行,说明已经找到一个解
            if row == n:
                temp_res = []
                for temp in board:
                    temp_str = "".join(temp)
                    temp_res.append(temp_str)
                res.append(temp_res)
            for col in range(n):
                if not isVaild(board, row, col):
                    continue
                board[row][col] = 'Q'
                backtracking(board, row+1, n)
                board[row][col] = '.'
        backtracking(board, 0, n)
        return res

C

char ***ans;
char **path;
int ansTop, pathTop;
//将path中元素复制到ans中
void copyPath(int n) {
    char **tempPath = (char**)malloc(sizeof(char*) * pathTop);
    int i;
    for(i = 0; i < pathTop; ++i) {
        tempPath[i] = (char*)malloc(sizeof(char) * n + 1);
        int j;
        for(j = 0; j < n; ++j)
            tempPath[i][j] = path[i][j];
        tempPath[i][j] = '\0';

    }
    ans[ansTop++] = tempPath;
}

//判断当前位置是否有效(是否不被其它皇后影响)
int isValid(int x, int y, int n) {
    int i, j;
    //检查同一行以及同一列是否有效
    for(i = 0; i < n; ++i) {
        if(path[y][i] == 'Q' || path[i][x] == 'Q')
            return 0;
    }
    //下面两个for循环检查斜角45度是否有效
    i = y - 1;
    j = x - 1;
    while(i >= 0 && j >= 0) {
        if(path[i][j] == 'Q')
            return 0;
        --i, --j;
    }

    i = y + 1;
    j = x + 1;
    while(i < n && j < n) {
        if(path[i][j] == 'Q')
            return 0;
        ++i, ++j;
    }

    //下面两个for循环检查135度是否有效
    i = y - 1;
    j = x + 1;
    while(i >= 0 && j < n) {
        if(path[i][j] == 'Q')
            return 0;
        --i, ++j;
    }

    i = y + 1;
    j = x -1;
    while(j >= 0 && i < n) {
        if(path[i][j] == 'Q')
            return 0;
        ++i, --j;
    }
    return 1;
}

void backTracking(int n, int depth) {
    //若path中有四个元素,将其拷贝到ans中。从当前层返回
    if(pathTop == n) {
        copyPath(n);
        return;
    }

    //遍历横向棋盘
    int i;
    for(i = 0; i < n; ++i) {
        //若当前位置有效
        if(isValid(i, depth, n)) {
            //在当前位置放置皇后
            path[depth][i] = 'Q';
            //path中元素数量+1
            ++pathTop;

            backTracking(n, depth + 1);
            //进行回溯
            path[depth][i] = '.';
            //path中元素数量-1
            --pathTop;
        }
    }
}

//初始化存储char*数组path,将path中所有元素设为'.'
void initPath(int n) {
    int i, j;
    for(i = 0; i < n; i++) {
        //为path中每个char*开辟空间
        path[i] = (char*)malloc(sizeof(char) * n + 1);
        //将path中所有字符设为'.'
        for(j = 0; j < n; j++)
            path[i][j] = '.';
        //在每个字符串结尾加入'\0'
        path[i][j] = '\0';
    }
}

char *** solveNQueens(int n, int* returnSize, int** returnColumnSizes){
    //初始化辅助变量
    ans = (char***)malloc(sizeof(char**) * 400);
    path = (char**)malloc(sizeof(char*) * n);
    ansTop = pathTop = 0;

    //初始化path数组
    initPath(n);
    backTracking(n, 0);

    //设置返回数组大小
    *returnSize = ansTop;
    int i; 
    *returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
    for(i = 0; i < ansTop; ++i) {
        (*returnColumnSizes)[i] = n;
    }
    return ans;
}
目录
相关文章
|
1月前
|
机器学习/深度学习 算法 C++
Leetcode第51题(N皇后)
这篇文章介绍了解决LeetCode第51题N皇后问题的C++深度优先搜索(DFS)算法实现,包括详细的代码和解题思路。
16 0
Leetcode第51题(N皇后)
|
5月前
leetcode54螺旋矩阵题解
leetcode54螺旋矩阵题解
31 2
|
6月前
力扣337.打家劫舍3(树形dp)
力扣337.打家劫舍3(树形dp)
|
6月前
|
Java
leetcode-198:打家劫舍
leetcode-198:打家劫舍
41 0
leetcode-198:打家劫舍
|
6月前
|
机器学习/深度学习
leetcode-52:N皇后 II
leetcode-52:N皇后 II
26 0
|
6月前
|
Java C++ Python
leetcode-59:螺旋矩阵 II
leetcode-59:螺旋矩阵 II
33 0
|
6月前
|
Java
leetcode-213:打家劫舍 II
leetcode-213:打家劫舍 II
38 0
|
6月前
|
Java
leetcode-337:打家劫舍 III
leetcode-337:打家劫舍 III
45 0
|
机器学习/深度学习 算法 安全
LeetCode - #52 N皇后 II
不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。
LeetCode - #52 N皇后 II
下一篇
无影云桌面