【入门篇】2 # 复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度

简介: 【入门篇】2 # 复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度

说明

【数据结构与算法之美】专栏学习笔记。



为什么引入这些时间复杂度

先看下面代码

//  n 表示数组 array 的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) {
       pos = i;
       break;
    }
  }
  return pos;
}

上面代码中如果没有 break;那么代码的时间复杂度就是 O(n),但是代码的循环中存在提前退出循环的操作,普通的时间复杂度分析解决不了这个问题。为了表示代码在不同情况下的不同时间复杂度,就引入了最好、最坏、平均、均摊时间复杂度。



最好、最坏情况时间复杂度

  • 最好情况时间复杂度:在最理想的情况下,执行代码的时间复杂度。
  • 最坏情况时间复杂度:在最糟糕的情况下,执行代码的时间复杂度。


上面代码在最理想的情况下,查找的变量 x 正好是数组的第一个元素,时间复杂度就是 O(1);在最糟糕的情况下,就是把整个数组都遍历一遍,时间复杂度就成了 O(n)。




平均情况时间复杂度


最好、最坏比较极端,为了更好地表示平均情况下的复杂度,引入了平均情况时间复杂度。


平均时间复杂度:又叫加权平均时间复杂度(或者期望时间复杂度),用代码在所有情况下执行的次数的加权平均值表示。


上面的代码中查找的变量 x 在数组中的位置,有 n+1 种情况:


   在数组的 0~n-1 位置中:n 种

   不在数组中:1 种


假设在数组中与不在数组中的概率都为 1/2,那么出现在 0~n-1 中任意位置的概率就是 1/(2n)。

52554ffbd9f546ce8a747956eb83738a.png

根据下面等差数列的公式:

   1+2+3+…+n = n(1+n)/2


可以快速计算出上面计算式等于(3n + 1)/4,推出平均时间复杂度为 O(n)。


大多数情况下,不需要区分最好、最坏、平均情况时间复杂度三种情况。只有同一块代码在不同的情况下,时间复杂度有量级的差距,才会使用这三种复杂度表示法来区分。



均摊时间复杂度


下面看一个往数组中插入数据的例子:当数组满了之后,也就是代码中的 count == array.length 时,用 for 循环遍历数组求和,并清空数组,将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。但如果数组一开始就有空闲空间,则直接将数据插入数组。这里均摊的话不止一次调用 insert 的,可以理解为有外循环。

int[] array = new int[n];
int count = 0;
void insert(int val) {
   if (count == array.length) {
      int sum = 0;
      for (int i = 0; i < array.length; ++i) {
         sum = sum + array[i];
      }
      array[0] = sum;
      count = 1;
   }
   array[count] = val;
   ++count;
}


最理想的情况下,数组中有空闲空间,时间复杂度为 O(1);最坏的情况下,数组中没有空闲空间,需要遍历一遍,其时间复杂度为 O(n)。


根据数据插入的位置的不同,可以分为 n 种情况,每种情况的时间复杂度是 O(1)。另外一种在数组没有空闲空间时插入一个数据,时间复杂度是 O(n)。这样就有 n + 1 种情况:得到平均时间复杂度为 O(1)。


8602f23fbe8c4f71b09d9a5bb5866923.png


这里并不需要像之前的平均复杂度分析方法那样,找出所有的输入情况及相应的发生概率,然后再计算加权平均值。针对这种特殊的场景,就引入了一种更加简单的分析方法均摊时间复杂度,又叫摊还分析(或者叫平摊分析)。


均摊分析的大致思路:这里对于 insert() 函数来说,O(1) 时间复杂度的插入和 O(n) 时间复杂度的插入,出现的频率是非常有规律的,数组已经满了,也就是 O(n) 是无空闲的状态,每满一次就会清空数组,清空数组后重新开始写 n - 1 次才会进行下一次清空,每次写入的复杂度就是O(1),有 O(n) 后接着 n - 1 个 O(1),循环往复。所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1),可以理解为 (n + n - 1)/n。


均摊时间复杂度就是一种特殊的平均时间复杂度,能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。



目录
相关文章
|
存储 算法 搜索推荐
【算法基础】时间复杂度和空间复杂度
【算法基础】时间复杂度和空间复杂度
183 0
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
25 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
1月前
|
存储 算法
算法的时间复杂度和空间复杂度
本文详细讨论了算法的时间复杂度和空间复杂度,包括它们的概念、计算方法和常见复杂度的对比,并通过多个实例解释了如何计算算法的时间和空间复杂度。
66 0
算法的时间复杂度和空间复杂度
|
6月前
|
算法
说说你对算法中时间复杂度,空间复杂度的理解?如何计算?
该文介绍了算法的基本概念,强调了时间和空间复杂度在衡量算法效率中的重要性。时间复杂度表示算法执行时间与输入规模的增长关系,常用大O符号表示,如O(1), O(log n), O(n), O(nlogn), O(n^2)等。文章指出,最坏情况下的时间复杂度是评估算法性能的上限,并且在实际应用中需要在时间与空间之间找到平衡。
|
6月前
|
机器学习/深度学习 存储 算法
详解算法的时间复杂度和空间复杂度!
详解算法的时间复杂度和空间复杂度!
|
6月前
|
机器学习/深度学习 算法
3.最好、最坏、平均、均摊时间复杂度
3.最好、最坏、平均、均摊时间复杂度
109 1
|
6月前
|
算法 搜索推荐 Java
数据结构与算法面试:基于比较的排序算法时间复杂度最坏情况下是 O(nlogn),请问有没有更快的算法?(提示:计数排序、基数排序)
数据结构与算法面试:基于比较的排序算法时间复杂度最坏情况下是 O(nlogn),请问有没有更快的算法?(提示:计数排序、基数排序)
48 0
|
算法
算法--时间复杂度与空间复杂度
算法--时间复杂度与空间复杂度
143 0
|
机器学习/深度学习 存储 算法
时间复杂度和空间复杂度的计算
时间复杂度和空间复杂度的计算
151 0