力扣300:最长递增子序列(Java动态规划+双指针)

简介: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

一、题目描述



给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。


示例 1:

输入:nums = [10,9,2,5,3,7,101,18]

输出:4

解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。


示例 2:

输入:nums = [0,1,0,3,2,3]

输出:4


示例 3:

输入:nums = [7,7,7,7,7,7,7]

输出:1


提示:

1 <= nums.length <= 2500

-104 <= nums[i] <= 104


进阶:

你能将算法的时间复杂度降低到 O(n log(n)) 吗?


二、思路讲解



用dp[i] 表示以i 结尾的序列中,最大递增子序列的长度。那么我们在每个i 处,往前找比自己小的数字(记为j 处),将该处的dp值+1,即是i处的dp值(说明i处的数字可以接在j 处后面组成递增子序列)。dp数组中的最大值即为所求。


三、Java代码实现



class Solution {
    public int lengthOfLIS(int[] nums) {
        //数组长度
        int len = nums.length;
        //最后结果
        int res = 0;
        //dp[i]表示以i结尾的序列的最大递增子序列长度
        int []dp = new int[len];
        //给dp赋初值
        for(int i=0; i<len; i++) {
            dp[i] = 1;
        }
        for(int i=0; i<len; i++) {
            int big = 0;
            for(int j=0; j<i; j++) {
                if(nums[j]<nums[i]) {
                    big = Math.max(big, dp[j]);
                }
            }
            dp[i] = big + 1;
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}


时间复杂度:        O(N^2)

空间复杂度:        O(N)


四、算法优化



进阶要求是要时间复杂度为nlogn。我们的算法的时间复杂度主要为:遍历nums数组,使用n,无法优化;线性遍历[0, i-1) 求dp[i],使用n。我们可以考虑重新设计dp的思路。


设计一个tail数组,tail[i] 表示长度为i的递增序列的最小末尾数字。例如,4 5 1 9 8 5 序列中,长度为1的递增序列有4,5,1,9,8,5,所以tail[1]为1;长度为1的递增序列有4 5,4 9,4 8,


5 8, 5 9……所以tail[2] 为5;长度为3的递增序列有 4 5 9,4 5 8,所以tail[3] 为8。可以看出,tail为一个递增序列,在查找操作时,我们可以使用二分查找。


那么,我们在计算tail[i]的时候,只需要遍历nums,找到第一个比num大的tail[k],说明num更适合放在tail[k-1]位置,而不能接在tail[k]位置(接上就不递增了)。如果num比tail中所有数字都大,那就说明num适合接在所有递增序列之后,这时递增序列的长度又可以增加了。


参考:力扣300. 最长递增子序列(动态规划 + 二分查找,清晰图解)

class Solution {
    public int lengthOfLIS(int[] nums) {
        //数组长度
        int len = nums.length;
        //tail[i]表示,长度为i的递增序列的最小末尾数字
        int []tail = new int[len];
        //题目所求 递增序列的最大长度
        int resLen = 0;
        for(int i=0; i<len; i++) {
            int left = 0;
            int right = resLen;
            //二分查找 找到比nums[i]大的tail,若找不到,说明nums[i]适合放在所有序列的末尾,那么就向后更新一个长度
            while(left < right) {
                int mid = (left+right) / 2;
                if(tail[mid]<nums[i]) {
                    left = mid+1;
                } else {
                    right = mid;
                }
            }
            tail[left] = nums[i];
            //更新长度
            resLen = resLen==right? (resLen+1) : resLen;
        }
        return resLen;
    }
}


时间复杂度:        O(NlogN)


空间复杂度:        O(N)


相关文章
|
3月前
|
Python
【Leetcode刷题Python】376. 摆动序列
文章提供了解决LeetCode "摆动序列" 问题的Python实现代码,通过遍历整数数组并使用两个变量 down 和 up 来记录正差和负差摆动序列的长度,最终返回最长摆动子序列的长度。
39 0
|
3月前
|
Python
【Leetcode刷题Python】946. 验证栈序列
LeetCode题目“946. 验证栈序列”的Python解决方案,通过模拟栈的压入和弹出操作来验证给定的两个序列是否能通过合法的栈操作得到。
29 6
|
3月前
|
算法 Python
【Leetcode刷题Python】剑指 Offer 33. 二叉搜索树的后序遍历序列
本文提供了一种Python算法,用以判断给定整数数组是否为某二叉搜索树的后序遍历结果,通过识别根节点并递归验证左右子树的值是否满足二叉搜索树的性质。
22 3
|
3月前
|
Python
【Leetcode刷题Python】105. 从前序与中序遍历序列构造二叉树
LeetCode上105号问题"从前序与中序遍历序列构造二叉树"的Python实现,通过递归方法根据前序和中序遍历序列重建二叉树。
25 3
|
3月前
|
算法 Python
【Leetcode刷题Python】300. 最长递增子序列
LeetCode 300题 "最长递增子序列" 的两种Python解决方案:一种使用动态规划,另一种使用贪心算法结合二分查找。
36 1
|
4月前
|
Arthas 监控 算法
JVM成神路终章:深入死磕Java虚拟机序列总纲
JVM成神路终章:深入死磕Java虚拟机序列总纲
113 1
|
3月前
|
算法 Java
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
42 0
|
3月前
|
Python
【Leetcode刷题Python】674. 最长连续递增序列
LeetCode 674题 "最长连续递增序列" 的Python解决方案,使用动态规划算法找出给定整数数组中最长连续递增子序列的长度。
94 0
|
5月前
|
索引
力扣每日一题 6/17 枚举+双指针
力扣每日一题 6/17 枚举+双指针
31 1