力扣每日一题 6/28 动态规划/数组

简介: 力扣每日一题 6/28 动态规划/数组

2742.给墙壁刷油漆【困难

题目:

给你两个长度为 n 下标从 0 开始的整数数组 costtime ,分别表示给 n 堵不同的墙刷油漆需要的开销和时间。你有两名油漆匠:

  • 一位需要 付费 的油漆匠,刷第 i 堵墙需要花费 time[i] 单位的时间,开销为 cost[i] 单位的钱。
  • 一位 免费 的油漆匠,刷 任意 一堵墙的时间为 1 单位,开销为 0 。但是必须在付费油漆匠 工作 时,免费油漆匠才会工作。

请你返回刷完 n 堵墙最少开销为多少。

示例 1:

输入:cost = [1,2,3,2], time = [1,2,3,2]

输出:3

解释:下标为 0 和 1 的墙由付费油漆匠来刷,需要 3 单位时间。同时,免费油漆匠刷下标为 2 和 3 的墙,需要 2 单位时间,开销为 0 。总开销为 1 + 2 = 3 。


示例 2:

输入:cost = [2,3,4,2], time = [1,1,1,1]

输出:4

解释:下标为 0 和 3 的墙由付费油漆匠来刷,需要 2 单位时间。同时,免费油漆匠刷下标为 1 和 2 的墙,需要 2 单位时间,开销为 0 。总开销为 2 + 2 = 4 。


提示:

  • 1 <= cost.length <= 500
  • cost.length == time.length
  • 1 <= cost[i] <= 10**6
  • 1 <= time[i] <= 500

分析问题:

思路一:

       首先,我们需要理解问题的本质是在给定成本和时间的列表情况下,找到满足一定体积需求的最小花费。这个问题通过定义一个 dfs 函数来解决,函数中的参数 i 表示当前考虑的物品索引,j 表示剩余需要的体积

       接下来,分析 dfs 函数的逻辑。j <= 0 时,表示剩余需要的体积已经满足要求,不需要再选择物品,所以返回 0 。当 i < 0j > 0 时,表示没有物品可选但仍有剩余体积需求,这是不合法的情况,所以返回正无穷大 inf 。对于其他情况,有两种选择:一是选择当前物品,此时需要花费 cost[i] ,剩余需要的体积变为 j - time[i] - 1 ,然后递归调用 dfs(i - 1, j - time[i] - 1) ;二是不选择当前物品,直接递归调用 dfs(i - 1, j) 。函数返回这两种选择中的最小值。

       然后,要注意到使用了 @cache 装饰器进行记忆化搜索。这是为了避免重复计算相同的子问题,提高算法的效率。

       最后,在 paintWalls 方法中,通过获取 cost 列表的长度 n ,然后调用 dfs(n - 1, n) 来计算最小的花费。

思路二:

       首先,定义两个匿名函数 minmax ,分别用于求两个数中的最小值和最大值。

       然后,获取 cost 列表的长度 n ,并初始化一个列表 ff[0] 设为 0f[1]f[n] 设为正无穷大 inf

       接下来,通过遍历 costtime 列表的对应元素 ct ,进行动态规划的计算

       对于每个 ct ,从 n1 逆序遍历 f 列表。对于每个 j ,更新 f[j] 的值。更新的方式是取当前的 f[j]f[max(j - t - 1, 0)] + c 中的最小值。 max(j - t - 1, 0) 表示在考虑当前时间 t 的情况下,能够完成的工作量对应的索引。通过这种方式,我们在每个位置 j 上,都找到了使用前 j 个物品能够达到的最小花费。

       最后,函数返回 f[n] ,即使用所有物品能够达到的最小花费。

代码实现:

思路一代码实现:
class Solution:
    def paintWalls(self, cost: List[int], time: List[int]) -> int:
        @cache  # 记忆化搜索
        def dfs(i: int, j: int) -> int:  # j 表示剩余需要的体积
            if j <= 0:  # 没有约束,后面什么也不用选了
                return 0
            if i < 0:  # 此时 j>0,但没有物品可选,不合法
                return inf
            return min(dfs(i - 1, j - time[i] - 1) + cost[i], dfs(i - 1, j))
        n = len(cost)
        return dfs(n - 1, n)


思路二代码实现:
class Solution:
    def paintWalls(self, cost: List[int], time: List[int]) -> int:
        # 定义一个匿名函数min,用于求两个数的最小值
        min = lambda a, b: b if b < a else a
        # 定义一个匿名函数max,用于求两个数的最大值
        max = lambda a, b: b if b > a else a
        n = len(cost)
        # 初始化一个列表f,f[0]为0,f[1]到f[n]为正无穷大
        f = [0] + [float('inf')] * n
        # 遍历cost和time列表的对应元素
        for c, t in zip(cost, time):
            # 从n到1逆序遍历f列表
            for j in range(n, 0, -1):
                # 更新f[j]的值,取当前f[j]和f[max(j - t - 1, 0)] + c的最小值
                f[j] = min(f[j], f[max(j - t - 1, 0)] + c)
        # 返回f[n],即完成所有工作的最小花费
        return f[n]


总结:

思路一代码详解:
  1. 定义了一个内部的 dfs 函数,该函数使用了记忆化搜索(通过 @cache 装饰器实现)。dfs 函数接受两个参数:i 表示当前考虑的物品索引,j 表示剩余需要的体积。
  2. dfs 函数中,如果 j <= 0 ,表示剩余需要的体积已经满足要求,不需要再选择物品,返回 0
  3. 如果 i < 0j > 0 ,表示没有物品可选但仍有剩余体积需求,这种情况是不合法的,返回 inf (表示正无穷大)。
  4. 对于其他情况,有两种选择:
  • 选择当前物品(索引为 i ),那么需要花费 cost[i] ,并且剩余需要的体积变为 j - time[i] - 1 ,然后递归调用 dfs(i - 1, j - time[i] - 1)
  • 不选择当前物品,直接递归调用 dfs(i - 1, j)
  1. 最后,函数返回这两种选择中的最小值。
  2. paintWalls 方法中,首先获取 cost 列表的长度 n ,然后调用 dfs(n - 1, n) 来计算最小的花费。

       总的来说,这段代码的目的是通过递归的方式,在考虑每个物品的选择与否的情况下,计算出满足剩余体积需求的最小花费。记忆化搜索的使用可以避免重复计算,提高算法的效率


考点

  1. 动态规划:两段代码都运用了动态规划的思想来解决问题。通过定义合适的状态(如代码中的 f 数组)和状态转移方程(如更新 f[j] 的值),来逐步求解最优解。
  2. 函数定义与使用:代码中定义了匿名函数(如 minmax 函数)来简化比较和操作。
  3. 列表操作:涉及到列表的初始化、遍历(正序和逆序)以及元素的更新。
  4. 逻辑推理与问题分析:需要理解问题的要求,找出合适的解法,并将其转化为代码实现。

 

收获

  1. 深入理解动态规划的概念和应用:通过实际解决这个问题,更加熟悉如何根据问题的特点定义状态和状态转移方程,从而有效地运用动态规划来求解最优解。
  2. 提高函数使用和定义的能力:学会了使用匿名函数来简洁地表达一些常见的操作,增强了代码的可读性和简洁性。
  3. 增强对列表数据结构的操作能力:包括列表的初始化、遍历和元素的修改,能够更加熟练地运用列表来解决实际问题。
  4. 培养逻辑思维和问题分析能力:在理解问题的基础上,能够将其转化为有效的算法和代码实现,提高了解决复杂问题的能力。
  5. 学会从不同的角度思考问题:两段代码虽然都解决了同一个问题,但实现方式略有不同,通过对比学习,可以拓宽解题思路,提高解决问题的灵活性。

“祈愿万家灯火熨烫过脉络,刀山与火海多深刻,都陪你渡过。”——《不痛》


目录
相关文章
|
1月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
38 0
|
3月前
|
算法
LeetCode第53题最大子数组和
LeetCode第53题"最大子数组和"的解题方法,利用动态规划思想,通过一次遍历数组,维护到当前元素为止的最大子数组和,有效避免了复杂度更高的暴力解法。
LeetCode第53题最大子数组和
LeetCode------找到所有数组中消失的数字(6)【数组】
这篇文章介绍了LeetCode上的"找到所有数组中消失的数字"问题,提供了一种解法,通过两次遍历来找出所有未在数组中出现的数字:第一次遍历将数组中的每个数字对应位置的值增加数组长度,第二次遍历找出所有未被增加的数字,即缺失的数字。
|
1月前
【LeetCode-每日一题】 删除排序数组中的重复项
【LeetCode-每日一题】 删除排序数组中的重复项
19 4
|
1月前
|
索引
Leetcode第三十三题(搜索旋转排序数组)
这篇文章介绍了解决LeetCode第33题“搜索旋转排序数组”的方法,该问题要求在旋转过的升序数组中找到给定目标值的索引,如果存在则返回索引,否则返回-1,文章提供了一个时间复杂度为O(logn)的二分搜索算法实现。
18 0
Leetcode第三十三题(搜索旋转排序数组)
|
1月前
|
算法 C++
Leetcode第53题(最大子数组和)
这篇文章介绍了LeetCode第53题“最大子数组和”的动态规划解法,提供了详细的状态转移方程和C++代码实现,并讨论了其他算法如贪心、分治、改进动态规划和分块累计法。
57 0
|
1月前
|
C++
【LeetCode 12】349.两个数组的交集
【LeetCode 12】349.两个数组的交集
16 0
|
3月前
|
算法
LeetCode第81题搜索旋转排序数组 II
文章讲解了LeetCode第81题"搜索旋转排序数组 II"的解法,通过二分查找算法并加入去重逻辑来解决在旋转且含有重复元素的数组中搜索特定值的问题。
LeetCode第81题搜索旋转排序数组 II
|
3月前
|
算法 索引
LeetCode第34题在排序数组中查找元素的第一个和最后一个位置
这篇文章介绍了LeetCode第34题"在排序数组中查找元素的第一个和最后一个位置"的解题方法,通过使用双指针法从数组两端向中间同时查找目标值,有效地找到了目标值的首次和最后一次出现的索引位置。
LeetCode第34题在排序数组中查找元素的第一个和最后一个位置
|
3月前
|
算法
LeetCode第33题搜索旋转排序数组
这篇文章介绍了LeetCode第33题"搜索旋转排序数组"的解题方法,通过使用二分查找法并根据数组的有序性质调整搜索范围,实现了时间复杂度为O(log n)的高效搜索算法。
LeetCode第33题搜索旋转排序数组