Slam基础学习之刚体运动

简介: 笔记

Slam基础学习之刚体运动

设在世界坐标中有一点p1,
经过一次旋转后相机的点为p2,
旋转矩阵为R,变换矩阵为T。


1.世界坐标转换为相机的坐标

p2=R∗p1


2.相机坐标转换为世界坐标

p 1 = R − 1 ∗ p 2


3.欧式变换,世界坐标到相机坐标,这里的p1,p2为齐次坐标

p2=T∗p1


反之为

p 1 = T T ∗ p 2


4.旋转向量到旋转矩阵的转化

41.png


5.四元数与旋转向量之间的变换


theat=2arccosq

44.png


6.四元数到旋转矩阵

45.png


其中内容还挺多的,想要去了解其中的内容,可以去看一下那个十四讲,里面讲的比较基础和全面。


thank for your reading!!!

公众号:FPGA之旅


目录
相关文章
|
7月前
三维手部关键点
三维手部关键点
|
26天前
|
人工智能 小程序 前端开发
【一步步开发AI运动小程序】六、人体骨骼图绘制
随着AI技术的发展,阿里体育等公司推出的AI运动APP如“乐动力”、“天天跳绳”等,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始,利用“云智AI运动识别小程序插件”,在小程序中实现类似功能,包括人体骨骼图的绘制原理及其实现代码,确保骨骼图与人体图像精准重合。下篇将继续介绍运动分析方法。
|
传感器 机器学习/深度学习 算法
【姿态解算】基于扩展卡尔曼滤波九轴传感器姿态解算研究附代码
【姿态解算】基于扩展卡尔曼滤波九轴传感器姿态解算研究附代码
|
传感器 Web App开发 机器学习/深度学习
计算机视觉教程0-3:为何拍照会有死亡视角?详解相机矩阵与畸变
计算机视觉教程0-3:为何拍照会有死亡视角?详解相机矩阵与畸变
711 0
计算机视觉教程0-3:为何拍照会有死亡视角?详解相机矩阵与畸变
|
算法
通过光流法检测运动物体,得到图像运动场
通过光流法检测运动物体,得到图像运动场
396 0
通过光流法检测运动物体,得到图像运动场
|
机器学习/深度学习 传感器 存储
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(下)
论文调查的主要目的是介绍VSLAM系统的最新进展,并讨论现有的挑战和未来趋势。论文对在VSLAM领域发表的45篇有影响力的论文进行了深入的调查,并根据不同的特点对这些方法进行了分类,包括novelty domain、目标、采用的算法和语义水平。最后论文讨论了当前的趋势和未来的方向,有助于研究人员进行研究。
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(下)
|
传感器 机器学习/深度学习 数据采集
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(上)
论文调查的主要目的是介绍VSLAM系统的最新进展,并讨论现有的挑战和未来趋势。论文对在VSLAM领域发表的45篇有影响力的论文进行了深入的调查,并根据不同的特点对这些方法进行了分类,包括novelty domain、目标、采用的算法和语义水平。最后论文讨论了当前的趋势和未来的方向,有助于研究人员进行研究。
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(上)
|
传感器 人工智能 自动驾驶
一文尽览 | 计算机视觉中的鱼眼相机模型及环视感知任务汇总!(上)
环视鱼眼摄像机通常用于自动驾驶中的近距离感知,车辆四面的四个鱼眼摄像头足以覆盖车辆周围的360°范围,捕捉整个近距离区域。一些应用场景包括自动泊车、交通拥堵辅助等
一文尽览 | 计算机视觉中的鱼眼相机模型及环视感知任务汇总!(上)
|
机器学习/深度学习 编解码 人工智能
一文尽览 | 计算机视觉中的鱼眼相机模型及环视感知任务汇总!(下)
环视鱼眼摄像机通常用于自动驾驶中的近距离感知,车辆四面的四个鱼眼摄像头足以覆盖车辆周围的360°范围,捕捉整个近距离区域。一些应用场景包括自动泊车、交通拥堵辅助等
一文尽览 | 计算机视觉中的鱼眼相机模型及环视感知任务汇总!(下)