leetcode 236 二叉树的最近公共祖先

简介: leetcode 236 二叉树的最近公共祖先

二叉树的最近公共祖先

bf4ce167a2f54809a941b4a6db688573.png

递归非回溯法(内存消耗大)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<TreeNode*>  result;
    int find_node(TreeNode* cur, TreeNode* p, TreeNode* q)
    {
        int cur_val=0;
        if(cur==NULL) return 0;
        //找到p权值是1,找到q权值是2
        if(cur->val == p->val) cur_val += 1;
        if(cur->val == q->val) cur_val += 2;
        int left_val = find_node(cur->left , p, q);
        int right_val = find_node(cur->right , p, q);
    //当这个节点及左右子树里面满足3,也就是同时存在pq时候,存入vector
        if(left_val+right_val+cur_val==3) result.push_back(cur) ;
    //返回权值和
        return left_val+right_val+cur_val;
    }
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        int val = find_node(root,p,q);
        //因为最进公共祖先最后发现,但是由于递归是最先存入vector,因此取第一个
        return result[0];
    }
};

递归回溯法

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* find_node(TreeNode* cur, TreeNode* p, TreeNode* q)
    {   
        //发现pq或者空,返回该节点
            if (cur == q || cur == p || cur == NULL) return cur;
            TreeNode* left = find_node(cur->left, p, q);
            TreeNode* right = find_node(cur->right, p, q);
            //发现两边均有点,返回当前点
            if (left != NULL && right != NULL) return cur;
      //发现右子树有点返回
            if (left == NULL && right != NULL) return right;
            //发现左子树有点返回
            else if (left != NULL && right == NULL) return left;
            else  return NULL;  //  (left == NULL && right == NULL)
        }
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        return find_node(root,p,q);
    }
};

二刷

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* result ;
    int track_back(TreeNode* cur, TreeNode* p, TreeNode* q)
    {
        if(cur == NULL) return 0;
        int flag = 0;
        int left_flag = track_back(cur->left , p ,q);
        int right_flag = track_back(cur->right , p ,q);
        if(cur == p) flag += 1;
        else if(cur == q ) flag += 2;
        if(flag + left_flag + right_flag == 3) 
        {
            result = cur;
            return 0;
        }
        return flag + left_flag + right_flag;
    }
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        track_back(root,p,q);
        return result;
    }
};
相关文章
|
6月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
303 14
|
7月前
|
算法 Go
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
189 10
|
7月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
366 10
|
7月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
178 4
|
7月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
408 9
【LeetCode 44】235.二叉搜索树的最近公共祖先
【LeetCode 44】235.二叉搜索树的最近公共祖先
102 1
【LeetCode 43】236.二叉树的最近公共祖先
【LeetCode 43】236.二叉树的最近公共祖先
127 0
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
248 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
166 6
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
358 2

热门文章

最新文章

下一篇
oss云网关配置