现代检测技术课程实验编程:最小二乘法应用编程

简介: 现代检测技术课程实验编程:最小二乘法应用编程

e2bd1989831d48ff8cc0d78728be70d1.jpg

一、最小二乘法编程题目描述


ea32577bc3da49069a46609727645aa7.jpg



最小二乘法编程题目描述如下所示

在对量程为10MPa的压力传感器进行标定时,传感器输出电压值与压力值之间的关系如下表所示,请简述最小二乘法准则的意义,并分析下列电压-压力直线中哪一条最符合最小二乘法准则?(使用计算机辅助进行计算)




bc66bb826d694026a70fd17fd7c57395.jpg

(1) y=5.02x+0.08;(2)y=5.05x+0.07;

(3) y=4.95x+0.12;(4)y=4.95x+0.15;

(5) y=5.00x+0.07


二、最小二乘法编程题目要求


最小二乘法编程题目要求如下所示


使用计算机软件(VB、VC、JAVA、LabVIEW、Matlab、Python均可)编程完成本次编程题目;


所编程序要有较为美观的GUI界面,可以通过人机界面输入校准数据xi/yi,和备选直线方程的参数。


所编程序,要能够直接显示哪条直线为最佳直线,不能人为进行判断。


对所编程序的原理和运行结果进行介绍和分析。


三、什么是最小二乘法


最小二乘法定义如下所示


最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达 。最小二乘法是解决曲线拟合问题最常用的方法。


四、最小二乘法编程步骤


9991ecb3904a46db95b0058f1616b140.jpg


最小二乘法编程


4.1、 界面的设计


使用MATLAB2014b软件进行GUI页面的设计,如下图所示


4e9c0940de7c44ce9383a2e002f971ea.png



  • 1 界面可以进行测量数据的压力和电压的输入、五条拟合直线的回归参数a、b。
  • 2 点击计算按钮,可以完成最小二乘法直线拟合的回归参数a、b。五条直线的残差平方和。自动判断哪条直线最符合最小二乘法准则。
  • 3 页面最右边的轴可以显示最小二乘法直线拟合的图像。


4.2、 程序的编写


4.2.1、程序在计算按钮如下的回调函数中编写


1 程序在计算按钮如下的回调函数中编写,代码如下


function pushbutton1_Callback(hObject, eventdata, handles)


4.2.2、编辑的文本框输入的数据转换成数字类型的数据


2 将可以编辑的文本框输入的数据转换成数字类型的数据,代码如下

Xi1 =  get(handles.edit_Xi1, 'String'); Yi1 =  get(handles.edit_Yi1, 'String');
Xi2 =  get(handles.edit_Xi2, 'String'); Yi2 =  get(handles.edit_Yi2, 'String');
Xi3 =  get(handles.edit_Xi3, 'String'); Yi3 =  get(handles.edit_Yi3, 'String');
Xi4 =  get(handles.edit_Xi4, 'String'); Yi4 =  get(handles.edit_Yi4, 'String');
Xi5 =  get(handles.edit_Xi5, 'String'); Yi5 =  get(handles.edit_Yi5, 'String');
Xi1 = str2num(Xi1); Yi1 = str2num(Yi1);
Xi2 = str2num(Xi2); Yi2 = str2num(Yi2);
Xi3 = str2num(Xi3); Yi3 = str2num(Yi3);
Xi4 = str2num(Xi4); Yi4 = str2num(Yi4);
Xi5 = str2num(Xi5); Yi5 = str2num(Yi5);
a1 =  get(handles.edit_a1, 'String'); b1 =  get(handles.edit_b1, 'String');
a2 =  get(handles.edit_a2, 'String'); b2 =  get(handles.edit_b2, 'String');
a3 =  get(handles.edit_a3, 'String'); b3 =  get(handles.edit_b3, 'String');
a4 =  get(handles.edit_a4, 'String'); b4 =  get(handles.edit_b4, 'String');
a5 =  get(handles.edit_a5, 'String'); b5 =  get(handles.edit_b5, 'String');
a1 = str2num(a1); b1 = str2num(b1);
a2 = str2num(a2); b2 = str2num(b2);
a3 = str2num(a3); b3 = str2num(b3);
a4 = str2num(a4); b4 = str2num(b4);
a5 = str2num(a5); b5 = str2num(b5);


4.2.3、将Xi、Yi数据存放与数组中

3 将Xi、Yi数据存放与数组中,代码如下

Xi = [Xi1 Xi2 Xi3 Xi4 Xi5];
Yi = [Yi1 Yi2 Yi3 Yi4 Yi5];


4.2.4、计算最小二乘法直线拟合的回归参数a、b

4 计算最小二乘法直线拟合的回归参数a、b,代码如下

squareXi = Xi .* Xi;
squareYi = Yi .* Yi;
mulXiYi = Xi .* Yi;
sumXi = sum(Xi);
sumYi = sum(Yi);
sumSquareXi = sum(squareXi);
sumSquareYi = sum(squareYi);
sumMulXiYi = sum(mulXiYi);
Lxx = sumSquareXi - sumXi * sumXi / 5;
Lxy = sumMulXiYi - sumXi * sumYi / 5;
b = Lxy / Lxx;
a = sumYi / 5 - b * sumXi / 5;

4.2.5、计算五条直线的残差平方和

5 计算五条直线的残差平方和,代码如下


SubYiXi1 = Yi - (a1 + b1 * Xi);
squareSubYiXi1 = SubYiXi1 .* SubYiXi1;
sumSub1 = sum(squareSubYiXi1);
SubYiXi2 = Yi - (a2 + b2 * Xi);
squareSubYiXi2 = SubYiXi2 .* SubYiXi2;
sumSub2 = sum(squareSubYiXi2);
SubYiXi3 = Yi - (a3 + b3 * Xi);
squareSubYiXi3 = SubYiXi3 .* SubYiXi3;
sumSub3 = sum(squareSubYiXi3);
SubYiXi4 = Yi - (a4 + b4 * Xi);
squareSubYiXi4 = SubYiXi4 .* SubYiXi4;
sumSub4 = sum(squareSubYiXi4);
SubYiXi5 = Yi - (a5 + b5 * Xi);
squareSubYiXi5 = SubYiXi5 .* SubYiXi5;
sumSub5 = sum(squareSubYiXi5);


4.2.6、判断最佳的最小二乘法直线的拟合

6 判断最佳的最小二乘法直线的拟合,代码如下

subArrays = [sumSub1 sumSub2 sumSub3 sumSub4 sumSub5];
minSub = subArrays(1);
subJudge = 1;
for i = 2: 5
    if minSub > subArrays(i)
        minSub = subArrays(i);
        subJudge = i;
    end
end
strJudge = '最符合最小二乘法准侧的直线是: 第';
subJudge = num2str(subJudge);
strJudge1 = '条直线';
strJudge = strcat(strJudge, subJudge, strJudge1);


4.2.7、数据和图像的显示

7 数据和图像的显示,代码如下


set(handles.text_judge, 'String', num2str(strJudge));
set(handles.edit1, 'String', num2str(sumSub1));
set(handles.edit2, 'String', num2str(sumSub2));
set(handles.edit3, 'String', num2str(sumSub3));
set(handles.edit4, 'String', num2str(sumSub4));
set(handles.edit5, 'String', num2str(sumSub5));
set(handles.edit_result_a, 'String', num2str(a));
set(handles.edit_result_b, 'String', num2str(b));
plot(Xi, Yi, '*');
hold on
y1 = a1 + b1 * Xi;
axes(handles.axes1);
plot(Xi, y1, 'm');
hold on
y2 = a2 + b2 * Xi;
axes(handles.axes1);
plot(Xi, y2, 'r');
hold on
y3 = a3 + b3 * Xi;
axes(handles.axes1);
plot(Xi, y3, 'y');
hold on
y4 = a4 + b4 * Xi;
axes(handles.axes1);
plot(Xi, y4, 'k');
hold on
y5 = a5 + b5 * Xi;
axes(handles.axes1);
plot(Xi, y5, 'g');
hold on

三、 程序的运行结果


5bfa975927fb4657b118f601ac4dd058.png


  • 程序可以自动进行最佳拟合直线的判断。从运行的结果可以确定是第五条直线是最佳最小二乘法直线的拟合。

输入用最小二乘法计算得到的直线拟合回归参数,运行得到如下结果


30144cb731f74be6b0d6e127ac62d545.png


五、最小二乘法编程总结


909a93cc45e846509825ae2831a38087.jpg



  • 用MATLAB所编写的GUI页面程序实现了计算最小二乘法直线拟合的回归参数的计算。
  • 自动判断哪条直线最符合最小二乘法直线拟合的准侧。
  • 最小二乘法直线拟合的图像显示。

4cd359e17aac4b98a577da5b946712a0.jpg

相关文章
|
机器学习/深度学习 人工智能 算法
“探秘神经算法:如何用人工智能模拟大脑处理信息“
“探秘神经算法:如何用人工智能模拟大脑处理信息“
84 0
|
4月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
424 1
|
7月前
|
开发框架 监控 .NET
【学习笔记】Verilog之三:行为建模方法
Verilog是一种硬件描述语言,用于模拟电子系统的结构和行为。行为建模是Verilog的一种方法,分为数据流行为建模和顺序行为建模。 数据流行为建模主要使用`assign`语句,它描述了电路的功能而不涉及具体结构。连续赋值语句(`assign`)用于给线网分配值,当右端表达式发生变化时,新值会立即赋给线网。此外,还有时延的概念,可以指定赋值或事件发生的延迟时间。
|
机器学习/深度学习
受限玻尔兹曼机|机器学习推导系列(二十五)
受限玻尔兹曼机|机器学习推导系列(二十五)
789 0
受限玻尔兹曼机|机器学习推导系列(二十五)
|
机器学习/深度学习
机器学习增强量子化学领域的新突破,用半经验量子力学方法的结构来构建动态响应的哈密顿量
机器学习增强量子化学领域的新突破,用半经验量子力学方法的结构来构建动态响应的哈密顿量
273 0
机器学习增强量子化学领域的新突破,用半经验量子力学方法的结构来构建动态响应的哈密顿量
现代检测技术课程实验编程:波特图分析仪原理仿真:一阶检测系统编程仿真
现代检测技术课程实验编程:波特图分析仪原理仿真:一阶检测系统编程仿真
现代检测技术课程实验编程:波特图分析仪原理仿真:一阶检测系统编程仿真
|
存储 传感器 算法
第八章 实验平台
第八章 实验平台
194 0
第八章 实验平台
|
机器学习/深度学习 人工智能 算法
机器学习原理篇:基础数学理论 Ⅱ
承接上篇博客,继续总结有关概率论、数理统计以及最优化理论,另外还有思考,欢迎大家前来回答补充!
151 0
机器学习原理篇:基础数学理论 Ⅱ
|
监控 数据可视化 测试技术
软工导第一节课 计算机软件工程学作一个简短的概述,回顾计算机系统发展简史 软件工程的基本原理和方法有概括的本质的认识,详细讲解生命周期相关知识讲解8种典型的软件过程模型
软工导第一节课 计算机软件工程学作一个简短的概述,回顾计算机系统发展简史 软件工程的基本原理和方法有概括的本质的认识,详细讲解生命周期相关知识讲解8种典型的软件过程模型
301 0
软工导第一节课 计算机软件工程学作一个简短的概述,回顾计算机系统发展简史 软件工程的基本原理和方法有概括的本质的认识,详细讲解生命周期相关知识讲解8种典型的软件过程模型
|
机器学习/深度学习 数据采集 存储
不谈高级原理,只用简单的语言来聊聊机器学习
不谈高级原理,只用简单的语言来聊聊机器学习
365 0
不谈高级原理,只用简单的语言来聊聊机器学习

热门文章

最新文章