pytorch使用TensorBoard可视化图像信息

简介: pytorch使用TensorBoard可视化图像信息

在训练神经网络时,我们希望能够直观地训练情况,例如损失函数的曲线、输入的图像、模型精度等信息,这些信息可以帮助我们更好地监督网络的训练过程,并为参数优化提供方向和依据。

其实我们可以有个更容易地实现方式就是定义一个列表,然后将每个epoch的训练结果添加到列表中,待模型训练完成之后,使用这个列表中的数据进行可视化以及绘图操作等。

本文提供一个更为专业的操作,它是一个常用的可视化工具:TensorBoard

PyTorch已经内置了TensorBoard的相关接口,用户在安装后便可调用相关接口进行数据可视化

代码如下

data_transform = T.Compose([
        T.ToTensor(),
        T.Normalize((0.5,), (0.5,))
])
train_dataset = torchvision.datasets.MNIST('./', train=True, transform=data_transform)
val_dataset = torchvision.datasets.MNIST('./', train=False, transform=data_transform)
train_loader = torch.utils.data.DataLoader(train_dataset, 16)
val_loader = torch.utils.data.DataLoader(val_dataset, 16)
img, labels = next(iter(train_loader))
grid = torchvision.utils.make_grid(img)
logger = SummaryWriter(log_dir='./log')
logger.add_image('images', grid, 0)

首先定义日志写入器,然后将图像网格信息写入即可


目录
相关文章
|
8月前
|
人工智能 并行计算 PyTorch
【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)
【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)
390 0
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch CIFAR10图像分类 Swin Transformer篇(一)
Pytorch CIFAR10图像分类 Swin Transformer篇(一)
|
8月前
|
机器学习/深度学习 数据可视化 算法
Pytorch CIFAR10图像分类 Swin Transformer篇(二)
Pytorch CIFAR10图像分类 Swin Transformer篇(二)
|
8月前
|
机器学习/深度学习 数据可视化 PyTorch
PyTorch基础之模型保存与重载模块、可视化模块讲解(附源码)
PyTorch基础之模型保存与重载模块、可视化模块讲解(附源码)
170 1
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
505 0
|
3月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
434 2
|
7月前
|
机器学习/深度学习 人工智能 PyTorch
PyTorch 图像篇
计算机视觉是多学科交叉的科技,属人工智能关键分支,应用于智能安防、自动驾驶、医疗和制造。技术包括物体检测、语义分割、运动跟踪等。早期依赖手工特征,但深度学习尤其是卷积神经网络(CNN)的发展改变了这一状况,CNN通过自动学习特征,改善了图像分类效率。CNN包含卷积层、池化层和全连接层,解决传统方法参数多、易丢失空间信息的问题。卷积操作在图像处理中用于特征提取,通过二维互相关运算学习图像特征。
|
6月前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
|
6月前
|
数据可视化 计算机视觉 异构计算
确保您已经安装了必要的库,包括`torch`、`torchvision`、`segmentation_models_pytorch`、`PIL`(用于图像处理)和`matplotlib`(用于结果可视化)。您可以使用pip来安装这些库:
确保您已经安装了必要的库,包括`torch`、`torchvision`、`segmentation_models_pytorch`、`PIL`(用于图像处理)和`matplotlib`(用于结果可视化)。您可以使用pip来安装这些库:
|
6月前
|
数据可视化 PyTorch TensorFlow
PyTorch SummaryWriter TensorBoard 中进行可视化
PyTorch SummaryWriter TensorBoard 中进行可视化