ResNet残差网络Pytorch实现——cifar10数据集的预测

简介: ResNet残差网络Pytorch实现——cifar10数据集的预测

✌ 使用ResNet进行对cifar10数据集进行预测

import os
import json
import torch
from torchvision import transforms
from PIL import Image
import torchvision
from tqdm import tqdm
# 加载运算设备
device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# 数据处理
data_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
# 每批次数据数量
batch_size=100
# 加载需要预测的数据,train需要转化为False
test_dataset = torchvision.datasets.CIFAR10(root='./cifar10', 
                                            train=False,
                                            download=False, 
                                            transform=data_transform)
test_loader = torch.utils.data.DataLoader(test_dataset, 
                                          batch_size=batch_size,
                                          shuffle=False)
# 加载预测结果与真实分类的映射
json_path='./class_indices.json'
json_file=open(json_path,'r')
class_indict=json.load(json_file)
# 构建网络
model=resnet34(num_classes=10).to(device)
# 加载模型训练好的参数
weights_path='./resNet34_cifar10.pth'
model.load_state_dict(torch.load(weights_path,map_location=device))
# 开启验证模式,进行预测
acc=0
model.eval()
test_bar=tqdm(test_loader)
for data in test_bar:
    with torch.no_grad():
        images,labels=data
        output=model(images.to(device)).cpu()
        y_pred=torch.max(output,dim=1)[1]
        acc+=torch.eq(y_pred,labels.to(device)).sum().item() 
# 打印模型预测的准确率
print(acc/len(test_dataset))


目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
267 0
|
5月前
|
机器学习/深度学习 人工智能 PyTorch
|
2月前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
113 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
108 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
1月前
|
机器学习/深度学习 API 算法框架/工具
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
33 0
|
1月前
|
机器学习/深度学习 编解码 自然语言处理
ResNet(残差网络)
【10月更文挑战第1天】
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
3月前
|
机器学习/深度学习 安全 网络协议
网络安全公开数据集Maple-IDS,恶意流量检测数据集开放使用!
【8月更文挑战第29天】Maple-IDS 是东北林业大学网络安全实验室发布的网络入侵检测评估数据集,旨在提升异常基础入侵检测和预防系统的性能与可靠性。该数据集包含多种最新攻击类型,如 DDoS 和 N-day 漏洞,覆盖多种服务和网络行为,兼容 CIC-IDS 格式,便于直接使用或生成 csv 文件,适用于多种现代协议。
131 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例
如何使用TensorFlow和Keras实现条件生成对抗网络(CGAN)并以MNIST和Fashion MNIST数据集为例进行演示。
49 3
|
5月前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
324 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50