【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例

简介: 如何使用TensorFlow和Keras实现条件生成对抗网络(CGAN)并以MNIST和Fashion MNIST数据集为例进行演示。

1 引言

条件生成对抗网络(Conditional Generative Adversarial Nets,简称CGAN)是GAN的改进。

举例如图所示,如果使用Minist数据集

  • 在GAN中,在训练时,随机初始化一个和图片大小一致的矩阵和原始图片的矩阵进行博弈,产生一个新的类似于原始图片的网络。
  • 在Conditional GAN中,在训练时,会同时输入label,告诉当前网络生成的图片是数字8,而不是生成其他数字的图片

1.png

图1 GAN原理图

2.png

图2 Conditional GAN原理图

2 实现

Github源码

Mian.py

指定条件即条件输入是Label


import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist,mnist
import utils
from models import build_discriminator_model,build_generator_model
import numpy as np

# 图片维度
noise_dim = 100
# 学习率
learning_rate = 1e-4
# 交叉熵用来计算生成器Generator和鉴别器Disctiminator的损失函数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
# 指定使用哪个数据集
dataset = 'fashion_mnist'
if dataset == 'mnist':
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
if dataset == 'fashion_mnist':
    (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
else:
    raise RuntimeError('Dataset not found')
# 数据标准化
X_train, X_test = utils.normalize(X_train, X_test)
# 初始化G和D
discriminator = build_discriminator_model()
generator = build_generator_model()
# 数据标准化
def normalize(train, test):
  # convert from integers to floats
  train_norm = train.astype('float32')
  test_norm = test.astype('float32')
  # normalize to range 0-1
  train_norm = train_norm / 255.0
  test_norm = test_norm / 255.0
  # return normalized images
  return train_norm, test_norm

# 生成器和鉴别器的优化器
generator_optimizer = tf.keras.optimizers.Adam(learning_rate = 1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate = 1e-4)

# 鉴别器的损失函数
def discriminator_loss(real_output, fake_output):
    real_loss = cross_entropy(tf.ones_like(real_output), real_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    total_loss = real_loss + fake_loss
    return total_loss
# 生成器的损失函数
def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)
# 保存模型
def save_models(epochs, learning_rate):
    generator.save(f'generator-epochs-{epochs}-learning_rate-{learning_rate}.h5')
    discriminator.save(f'discriminator-epochs-{epochs}-learning_rate-{learning_rate}.h5')

# 训练
tf.function
def train_step(batch_size=512):
    # 随机产生一组下标,从训练数据中随机抽取训练集
    idx = np.random.randint(0, X_train.shape[0], batch_size)
    # 随机抽取训练集
    Xtrain, labels = X_train[idx], y_train[idx]
    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        # 随机初始化一个和图片大小的矩阵
        z = np.random.normal(0, 1, size=(batch_size, noise_dim))
        # 经过生成器,产生一个图片。并指定条件是label,把label嵌入到图片中
        generated_images = generator([z, labels], training=True)
        real_output = discriminator([Xtrain, labels], training=True)
        fake_output = discriminator([generated_images, labels], training=True)
        gen_loss = generator_loss(fake_output)
        disc_loss = discriminator_loss(real_output, fake_output)
    # 打印G和D的损失函数
    tf.print(f'Genrator loss: {gen_loss} Discriminator loss: {disc_loss}')
    gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
    # 更新梯度
    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
if __name__  =="__main__":
    epochs = 100
    for epoch in range(1, epochs + 1):
        print(f'Epoch {epoch}/{epochs}')
        train_step()
        if epoch % 500 == 0:
            save_models(epoch, learning_rate)

Model.py

模型采用深度卷卷积的GAN网络结构

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential, Model
import numpy as np

WIDTH, HEIGHT = 28, 28
num_classes = 10
img_channel = 1
img_shape = (WIDTH, HEIGHT, img_channel)
noise_dim = 100

def build_generator_model():
    model = tf.keras.Sequential()

    model.add(layers.Dense(7*7*256, use_bias=False,input_shape=(noise_dim,)))
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Reshape((7, 7, 256)))

    model.add(layers.Conv2DTranspose(128, (1, 1), strides=(1, 1), padding='same', use_bias=False))
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', use_bias=False))
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))

    z = layers.Input(shape=(noise_dim,))
    label = layers.Input(shape=(1,))

    label_embedding = layers.Embedding(num_classes, noise_dim, input_length = 1)(label)
    label_embedding = layers.Flatten()(label_embedding)
    joined = layers.multiply([z, label_embedding])

    img = model(joined)
    return Model([z, label], img)

def build_discriminator_model():
    model = tf.keras.Sequential()
    model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
                                      input_shape=[28, 28, 2]))
    model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

    model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
    model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

    model.add(layers.Flatten())
    model.add(layers.Dense(1))

    img = layers.Input(shape=(img_shape))
    label = layers.Input(shape=(1,))

    label_embedding = layers.Embedding(input_dim=num_classes, output_dim=np.prod(img_shape), input_length = 1)(label)
    label_embedding = layers.Flatten()(label_embedding)
    label_embedding = layers.Reshape(img_shape)(label_embedding)

    concat = layers.Concatenate(axis=-1)([img, label_embedding])
    prediction = model(concat)
    return Model([img, label], prediction)
目录
相关文章
|
11天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
39 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
9天前
|
数据采集 TensorFlow 算法框架/工具
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
本教程详细介绍了如何使用TensorFlow 2.3训练自定义图像分类数据集,涵盖数据集收集、整理、划分及模型训练与测试全过程。提供完整代码示例及图形界面应用开发指导,适合初学者快速上手。[教程链接](https://www.bilibili.com/video/BV1rX4y1A7N8/),配套视频更易理解。
17 0
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
|
1月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
73 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
11天前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
126 0
|
6天前
|
机器学习/深度学习 SQL 数据采集
基于tensorflow、CNN网络识别花卉的种类(图像识别)
基于tensorflow、CNN网络识别花卉的种类(图像识别)
11 1
|
1月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
86 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
7天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
22 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
74 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
15天前
|
机器学习/深度学习 TensorFlow API
使用 TensorFlow 和 Keras 构建图像分类器
【10月更文挑战第2天】使用 TensorFlow 和 Keras 构建图像分类器
|
11天前
|
机器学习/深度学习 移动开发 TensorFlow
深度学习之格式转换笔记(四):Keras(.h5)模型转化为TensorFlow(.pb)模型
本文介绍了如何使用Python脚本将Keras模型转换为TensorFlow的.pb格式模型,包括加载模型、重命名输出节点和量化等步骤,以便在TensorFlow中进行部署和推理。
44 0

热门文章

最新文章