turbo编译码误码率性能matlab仿真

简介: turbo编译码误码率性能matlab仿真

1.算法描述

   Turbo码是一种极为复杂的信道编码技术,译码算法往往由于硬件实现的复杂度太高或者译码时延太长而难以实现。现目前Turbo码领域面临的主要问题是:在复杂度和时延都可以接受的前提下如何获得最佳的系统性能。Turbo码由分量码经由交织器级联而成。因此,分量码和交织器设计的好坏是决定Turbo码性能的关键因素。实际的通信系统中,为提高系统带宽效率,一种方法是通过删减部分校验比特来提高编码速率,称为删余。

   Turbo码的编码过程实际上是一个利用强约束短码构造伪随机长码的过程。Turbo码的译码算法主要有两大类。是基于最大后验概率(MAP)的软输出算法,主要包括标准MAP算法、对数域上的Log.MAP算法和Max. Log-MAP算法、修正的MAP算法(M-MAP)、滑动窗MAP(SW-MAP)算法和只有前向递推的MAP算法(OSA)。其中,MAP算法是MAP算法的对数形式,它通过将大量的乘法运算转化为加法运算来简化算法的复杂性。

  Turbo码由2个循环系统卷积码并行级联而成:译码采用迭代的串行译码交织器是Turbo 码所特有的,它可以使得信息序列随机化,增加各码字间的重量,从而提高码的保护能力。

 Turbo编码器的基本结构如图1所示:

1.png

  从图1的仿真结果可知,Turbo码编码器主要由分量删余矩阵、交织器、两个分量编码器以及复接器组成。

   分量编码器是Turbo码编码器中的一个重要组成部分。Turbo码的分量编码器使用RSC编码,因为循环编码器可以改善码的比特误码率性能。

删余矩阵是通过删除冗余的校验位来调节码率,Turbo码采用两个成员编器。

   交织器的作用是改变信息结构将传输过程中出现的突发错误进行的分散化和不规则化。交织器可以改变Turbo 码的重量分布,因此,交织器对Turbo 码性能的好坏有着重要作用。在Turbo 码中,交织器使输入码元符号的顺序尽可能随机分布,使码元符号之间的相关性减弱,从而使进入各个子译码器的信息序列之间不相关。

      Turbo码的译码使用了迭代译码。利用EXIT图实现对迭代译码过程的跟踪,从而估计迭代译码的收敛性。利用EXIT图还可以预测实现一定性能要求时所必须的迭代译码次数。它为分析迭代译码过程和迭代译码方案的设计提供了有力的工具。

     Turbo译码器主要包括如下几个结构:两个分量译码器模块,交织器模块,解交织器模块以及硬判决模块。

     Turbo译码器的基本结构如图2所示:

2.png

   Turbo译码器工作原理为:将接收到的串行数据进行并串转换,同时将删余的比特位填上虚拟比特。将信息序列r0以及RSC1生成的校验序列r1送入软输出译码器1,软输出译码器1生成的外信息序列Z1k经过交织后做为下一软输出译码器2的输入。信息序列r0经过交织器输入至译码器2,同时输入的还有RSC2生成的校验序列r2。

   译码器2的输出外信息Z2k经过解交织器后做为反馈输入至译码器1,再次重复以上过程进行软判决,直至最后译码输出性能不再有提高,将最后结果有译码器2输出解交织后做为判决输出。

   这种译码器结构的优点是每个译码器不仅可以利用本译码器的信息比特和校验比特,还能利用前一译码器提供的信息进行译码,从而提高译码的准确性。它的缺点是:迭代要花费更多时间,造成的延时使Turbo码在某些对时延要求高的通信系统(如数字电话等)中应用受限。

   Turbo码译码算法基于最大后验概率(MAP)算法或者是软输出维特比(SOVA)算法。MAP算法是最小化符号或比特差错概率,SOVA算法是最小化序列差错概率。在低SNR环境下,MAP算法比SOVA算法的性能有一定改善,但是MAP算法在每一时刻都要考虑所有路径,并且其运算是乘法和指数运算,比较复杂。

2.仿真效果预览
matlab2022a仿真结果如下:

3.png
4.png
5.png

3.MATLAB部分代码预览

M        = 256;
SNR      = 0:0.5:4;
max_iter = 50; 
TJL      = 10000;
for i=1:length(SNR)
    Bit_err(i) = 0;
    Num_err    = 0;
    Numbers    = 0; %误码率累加器
    N0         = 2*10^(-SNR(i)/10);
    while Num_err <= TJL
          Num_err
          fprintf('Eb/N0 = %f\n', SNR(i));
          Trans_data = round(rand(1,N-M));  %产生需要发送的随机数
          turbo_code = turbo_encode(Trans_data);
          
          Trans_BPSK = 2*turbo_code-1;       %BPSK
          
          %通过高斯信道
          Rec_BPSK   = awgn(Trans_BPSK,SNR(i),'measured');   
          
          %turbo译码 
          x_hat      = round(turbo_decode(Rec_BPSK));
          
          [nberr,rat]= biterr(x_hat,Trans_data);
          Num_err    = Num_err+nberr;
          Numbers    = Numbers+1;    
    end 
    Bit_err(i)=Num_err/(N*Numbers);
end
A_047
相关文章
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
16 6
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
算法
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法
基于排队理论的客户结账等待时间MATLAB模拟仿真
本程序基于排队理论,使用MATLAB2022A模拟客户结账等待时间,分析平均队长、等待时长、不能结账概率、损失顾客数等关键指标。核心算法采用泊松分布和指数分布模型,研究顾客到达和服务过程对系统性能的影响,适用于银行、超市等多个领域。通过仿真,优化服务效率,减少顾客等待时间。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章