leach协议性能对比仿真,包括死亡节点数,数据传输,网络能量消耗,簇头产生数以及负载均衡度

本文涉及的产品
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
应用型负载均衡 ALB,每月750个小时 15LCU
简介: leach协议性能对比仿真,包括死亡节点数,数据传输,网络能量消耗,簇头产生数以及负载均衡度

1.算法描述

   LEACH协议,全称是“低功耗自适应集簇分层型协议” (Low Energy Adaptive Clustering Hierarchy),是一种无线传感器网络路由协议。基于LEACH协议的算法,称为LEACH算法。LEACH算法是一种无线传感器网络路由协议,来源于Wendi Rabiner Heinzelman, Anantha Chandrakasan, 和Hari Balakrishnan三人在2000年Proceedings of the 33rd Hawaii International Conference on System Sciences上的一篇文章Energy-Efficient Communication Protocol for Wireless Microsensor Networks。 该算法基本思想是:以循环的方式随机选择簇头节点,将整个网络的能量负载平均分配到每个传感器节点中,从而达到降低网络能源消耗、提高网络整体生存时间的目的。仿真表明,与一般的平面多跳路由协议和静态分层算法相比,LEACH分簇协议可以将网络生命周期延长15%。

1.png

   LEACH在运行过程中不断的循环执行簇的重构过程,每个簇重构过程可以用回合的概念来描述。每个回合可以分成两个阶段:簇的建立阶段和传输数据的稳定阶段。为了节省资源开销,稳定阶段的持续时间要大于建立阶段的持续时间。簇的建立过程可分成4个阶段:簇头节点的选择、簇头节点的广播、簇头节点的建立和调度机制的生成。
    簇头节点的选择依据网络中所需要的簇头节点总数和迄今为止每个节点已成为簇头节点的次数来决定。具体的选择办法是:每个传感器节点随机选择0-1之间的一个值。如果选定的值小于某一个阈值,那么这个节点成为簇头节点。
   选定簇头节点后,通过广播告知整个网络。网络中的其他节点根据接收信息的信号强度决定从属的簇,并通知相应的簇头节点,完成簇的建立。最后,簇头节点采用TDMA方式为簇中每个节点分配向其传递数据的时间点。
   稳定阶段中,传感器节点将采集的数据传送到簇头节点。簇头节点对簇中所有节点所采集的数据进行信息融合后再传送给汇聚节点,这是一种较少通信业务量的合理工作模型。稳定阶段持续一段时间后,网络重新进入簇的建立阶段,进行下一回合的簇重构,不断循环,每个簇采用不同的CDMA代码进行通信来减少其他簇内节点的干扰。
   LEACH路由协议主要分为两个阶段:即簇建立阶段(setup phase)和稳定运行阶段(ready phase)。簇建立阶段和稳定运行阶段所持续的时间总和为一轮(round)。为减少协议开销,稳定运行阶段的持续时间要长于簇建立阶段。
  在簇建立阶段,传感器节点随机生成一个0,1之间的随机数,并且与阈值T(n)做比较,如果小于该阈值,则该节点就会当选为簇头。T(n)按照下列公式计算:式中:P为节点成为簇头节点的百分数,r为当前轮数,G为在最近的1/p轮中未当选簇头的节点集合。簇头节点选定后,广播自己成为簇头的消息,节点根据接收到的消息的强度决定加入哪个簇,并告知相应的簇头,完成簇的建立过程。然后,簇头节点采用TDMA的方式,为簇内成员分配传送数据的时隙。
   在稳定阶段,传感器节点将采集的数据传送到簇头节点。簇头节点对采集的数据进行数据融合后再将信息传送给汇聚节点,汇聚节点将数据传送给监控中心来进行数据的处理。稳定阶段持续一段时间后,网络重新进入簇的建立阶段,进行下一轮的簇重建,不断循环。

2.仿真效果预览
matlab2022a仿真结果如下:
2.png
3.png
4.png
5.png

3.MATLAB部分代码预览

 if Ea>0
 p(i)=P*n*S4(i).E*E4(i)/(Et*Ea);
 if(S4(i).E>0)
   temp_rand=rand;     
   if ( (S4(i).G)<=0)  
       %簇头的选举,当选的簇头会把各种相关信存入下面程序所给定的变量中
        if(temp_rand<= (p(i)/(1-p(i)*mod(r,round(1/p(i))))))
            countCHs4=countCHs4+1;
            packets_TO_BS4=packets_TO_BS4+1;
            PACKETS_TO_BS4(r+1)=packets_TO_BS4;
            S4(i).type='C';
            S4(i).G=round(1/p(i))-1;
            C4(cluster4).xd=S4(i).xd;
            C4(cluster4).yd=S4(i).yd;
            distance=sqrt( (S4(i).xd-(S4(n+1).xd) )^2 + (S4(i).yd-(S4(n+1).yd) )^2 );
            C4(cluster4).distance=distance;
            C4(cluster4).id=i;
            X4(cluster4)=S4(i).xd;
            Y4(cluster4)=S4(i).yd;
            cluster4=cluster4+1;
           %计算簇头发送4000bit数据到基站的能量消耗(这里应是所有节点包括簇头每一轮发送4000bit数据)
            distance;
            if (distance>do)
                S4(i).E=S4(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance )); 
            end
            if (distance<=do)
                S4(i).E=S4(i).E- ( (ETX+EDA)*(4000)  + Efs*4000*( distance * distance )); 
            end
        end     
    
    end
    % S4(i).G=S4(i).G-1;  
  end 
 end
end
A40
相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
92 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
1天前
|
缓存 网络协议 API
掌握网络通信协议和技术:开发者指南
本文探讨了常见的网络通信协议和技术,如HTTP、SSE、GraphQL、TCP、WebSocket和Socket.IO,分析了它们的功能、优劣势及适用场景。开发者需根据应用需求选择合适的协议,以构建高效、可扩展的应用程序。同时,测试与调试工具(如Apipost)能助力开发者在不同网络环境下优化性能,提升用户体验。掌握这些协议是现代软件开发者的必备技能,对项目成功至关重要。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
11天前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
6天前
|
机器学习/深度学习 数据安全/隐私保护
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
15天前
|
Kubernetes Shell Windows
【Azure K8S | AKS】在AKS的节点中抓取目标POD的网络包方法分享
在AKS中遇到复杂网络问题时,可通过以下步骤进入特定POD抓取网络包进行分析:1. 使用`kubectl get pods`确认Pod所在Node;2. 通过`kubectl node-shell`登录Node;3. 使用`crictl ps`找到Pod的Container ID;4. 获取PID并使用`nsenter`进入Pod的网络空间;5. 在`/var/tmp`目录下使用`tcpdump`抓包。完成后按Ctrl+C停止抓包。
44 12
|
21天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。

热门文章

最新文章