leach协议性能对比仿真,包括死亡节点数,数据传输,网络能量消耗,簇头产生数以及负载均衡度

本文涉及的产品
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
应用型负载均衡 ALB,每月750个小时 15LCU
简介: leach协议性能对比仿真,包括死亡节点数,数据传输,网络能量消耗,簇头产生数以及负载均衡度

1.算法描述

   LEACH协议,全称是“低功耗自适应集簇分层型协议” (Low Energy Adaptive Clustering Hierarchy),是一种无线传感器网络路由协议。基于LEACH协议的算法,称为LEACH算法。LEACH算法是一种无线传感器网络路由协议,来源于Wendi Rabiner Heinzelman, Anantha Chandrakasan, 和Hari Balakrishnan三人在2000年Proceedings of the 33rd Hawaii International Conference on System Sciences上的一篇文章Energy-Efficient Communication Protocol for Wireless Microsensor Networks。 该算法基本思想是:以循环的方式随机选择簇头节点,将整个网络的能量负载平均分配到每个传感器节点中,从而达到降低网络能源消耗、提高网络整体生存时间的目的。仿真表明,与一般的平面多跳路由协议和静态分层算法相比,LEACH分簇协议可以将网络生命周期延长15%。

1.png

   LEACH在运行过程中不断的循环执行簇的重构过程,每个簇重构过程可以用回合的概念来描述。每个回合可以分成两个阶段:簇的建立阶段和传输数据的稳定阶段。为了节省资源开销,稳定阶段的持续时间要大于建立阶段的持续时间。簇的建立过程可分成4个阶段:簇头节点的选择、簇头节点的广播、簇头节点的建立和调度机制的生成。
    簇头节点的选择依据网络中所需要的簇头节点总数和迄今为止每个节点已成为簇头节点的次数来决定。具体的选择办法是:每个传感器节点随机选择0-1之间的一个值。如果选定的值小于某一个阈值,那么这个节点成为簇头节点。
   选定簇头节点后,通过广播告知整个网络。网络中的其他节点根据接收信息的信号强度决定从属的簇,并通知相应的簇头节点,完成簇的建立。最后,簇头节点采用TDMA方式为簇中每个节点分配向其传递数据的时间点。
   稳定阶段中,传感器节点将采集的数据传送到簇头节点。簇头节点对簇中所有节点所采集的数据进行信息融合后再传送给汇聚节点,这是一种较少通信业务量的合理工作模型。稳定阶段持续一段时间后,网络重新进入簇的建立阶段,进行下一回合的簇重构,不断循环,每个簇采用不同的CDMA代码进行通信来减少其他簇内节点的干扰。
   LEACH路由协议主要分为两个阶段:即簇建立阶段(setup phase)和稳定运行阶段(ready phase)。簇建立阶段和稳定运行阶段所持续的时间总和为一轮(round)。为减少协议开销,稳定运行阶段的持续时间要长于簇建立阶段。
  在簇建立阶段,传感器节点随机生成一个0,1之间的随机数,并且与阈值T(n)做比较,如果小于该阈值,则该节点就会当选为簇头。T(n)按照下列公式计算:式中:P为节点成为簇头节点的百分数,r为当前轮数,G为在最近的1/p轮中未当选簇头的节点集合。簇头节点选定后,广播自己成为簇头的消息,节点根据接收到的消息的强度决定加入哪个簇,并告知相应的簇头,完成簇的建立过程。然后,簇头节点采用TDMA的方式,为簇内成员分配传送数据的时隙。
   在稳定阶段,传感器节点将采集的数据传送到簇头节点。簇头节点对采集的数据进行数据融合后再将信息传送给汇聚节点,汇聚节点将数据传送给监控中心来进行数据的处理。稳定阶段持续一段时间后,网络重新进入簇的建立阶段,进行下一轮的簇重建,不断循环。

2.仿真效果预览
matlab2022a仿真结果如下:
2.png
3.png
4.png
5.png

3.MATLAB部分代码预览

 if Ea>0
 p(i)=P*n*S4(i).E*E4(i)/(Et*Ea);
 if(S4(i).E>0)
   temp_rand=rand;     
   if ( (S4(i).G)<=0)  
       %簇头的选举,当选的簇头会把各种相关信存入下面程序所给定的变量中
        if(temp_rand<= (p(i)/(1-p(i)*mod(r,round(1/p(i))))))
            countCHs4=countCHs4+1;
            packets_TO_BS4=packets_TO_BS4+1;
            PACKETS_TO_BS4(r+1)=packets_TO_BS4;
            S4(i).type='C';
            S4(i).G=round(1/p(i))-1;
            C4(cluster4).xd=S4(i).xd;
            C4(cluster4).yd=S4(i).yd;
            distance=sqrt( (S4(i).xd-(S4(n+1).xd) )^2 + (S4(i).yd-(S4(n+1).yd) )^2 );
            C4(cluster4).distance=distance;
            C4(cluster4).id=i;
            X4(cluster4)=S4(i).xd;
            Y4(cluster4)=S4(i).yd;
            cluster4=cluster4+1;
           %计算簇头发送4000bit数据到基站的能量消耗(这里应是所有节点包括簇头每一轮发送4000bit数据)
            distance;
            if (distance>do)
                S4(i).E=S4(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance )); 
            end
            if (distance<=do)
                S4(i).E=S4(i).E- ( (ETX+EDA)*(4000)  + Efs*4000*( distance * distance )); 
            end
        end     
    
    end
    % S4(i).G=S4(i).G-1;  
  end 
 end
end
A40
相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
相关文章
|
3天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
110 80
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
54 31
|
28天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
18天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
16天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
27天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
67 7
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
3天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。