VGG16-好莱坞明星识别

简介: VGG16-好莱坞明星识别

一、前期工作

1. 设置GPU

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
gpus  

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

2. 导入并查看数据

data_dir = pathlib.Path("./data/")
image_count = len(list(data_dir.glob('*/*/*.jpg')))
print("图片总数为:",image_count)

图片总数为: 1800

roses= list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中


测试集与验证集的关系:


验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。

但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。

因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集

batch_size = 32
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.1,
    subset="training",
    label_mode = "categorical", #### 新增
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 1800 files belonging to 17 classes.

Using 1620 files for training.

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.1,
    subset="validation",
    label_mode = "categorical", #### 新增
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 1800 files belonging to 17 classes.

Using 180 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

['Angelina Jolie', 'Brad Pitt', 'Denzel Washington', 'Hugh Jackman', 'Jennifer Lawrence', 'Johnny Depp', 'Kate Winslet', 'Leonardo DiCaprio', 'Megan Fox', 'Natalie Portman', 'Nicole Kidman', 'Robert Downey Jr', 'Sandra Bullock', 'Scarlett Johansson', 'Tom Cruise', 'Tom Hanks', 'Will Smith']

2. 可视化数据

import numpy as np
plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[np.argmax(labels[i])])
        plt.axis("off")

3. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

(32, 224, 224, 3)

(32,17)

4. 配置数据集

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

使用prefetch()可显著减少空闲时间:

  • cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape。

from tensorflow.keras.regularizers import l2
weight_decay = 0 
drop_rate = 0
VGG16_model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    layers.Conv2D(64, (3, 3),padding='same',kernel_regularizer=l2(weight_decay), activation='relu', input_shape=(img_height, img_width, 3)), 
    layers.Dropout(drop_rate), 
    layers.Conv2D(64, (3, 3), padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),     
    layers.Dropout(drop_rate), 
    layers.AveragePooling2D(pool_size=(2,2),strides=(2,2)),   
    layers.Conv2D(128, (3, 3),padding='same',kernel_regularizer=l2(weight_decay),activation='relu'), 
    layers.Dropout(drop_rate), 
    layers.Conv2D(128, (3, 3),padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),     
    layers.Dropout(drop_rate), 
    layers.AveragePooling2D(pool_size=(2,2),strides=(2,2)),  
    layers.Conv2D(256, (3, 3), padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),     
    layers.Dropout(drop_rate), 
    layers.Conv2D(256, (3, 3), padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),   
    layers.Dropout(drop_rate), 
    layers.Conv2D(256, (3, 3),padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),     
    layers.Dropout(drop_rate), 
    layers.AveragePooling2D(pool_size=(2,2),strides=(2,2)), 
    layers.Conv2D(512, (3, 3),padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),     
    layers.Dropout(drop_rate), 
    layers.Conv2D(512, (3, 3),padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),   
    layers.Dropout(drop_rate), 
    layers.Conv2D(512, (3, 3),padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),     
    layers.Dropout(drop_rate), 
    layers.AveragePooling2D(pool_size=(2,2),strides=(2,2)), 
    layers.Conv2D(512, (3, 3),padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),     
    layers.Dropout(drop_rate), 
    layers.Conv2D(512, (3, 3),padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),   
    layers.Dropout(drop_rate), 
    layers.Conv2D(512, (3, 3),padding='same',kernel_regularizer=l2(weight_decay),activation='relu'),     
    layers.Dropout(drop_rate), 
    layers.AveragePooling2D(pool_size=(2,2),strides=(2,2)),  
])
VGG16_model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
rescaling (Rescaling)        (None, 224, 224, 3)       0         
_________________________________________________________________
conv2d (Conv2D)              (None, 224, 224, 64)      1792      
_________________________________________________________________
dropout (Dropout)            (None, 224, 224, 64)      0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 224, 224, 64)      36928     
_________________________________________________________________
dropout_1 (Dropout)          (None, 224, 224, 64)      0         
_________________________________________________________________
average_pooling2d (AveragePo (None, 112, 112, 64)      0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 112, 112, 128)     73856     
_________________________________________________________________
dropout_2 (Dropout)          (None, 112, 112, 128)     0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 112, 112, 128)     147584    
_________________________________________________________________
dropout_3 (Dropout)          (None, 112, 112, 128)     0         
_________________________________________________________________
average_pooling2d_1 (Average (None, 56, 56, 128)       0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 56, 56, 256)       295168    
_________________________________________________________________
dropout_4 (Dropout)          (None, 56, 56, 256)       0         
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 56, 56, 256)       590080    
_________________________________________________________________
dropout_5 (Dropout)          (None, 56, 56, 256)       0         
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 56, 56, 256)       590080    
_________________________________________________________________
dropout_6 (Dropout)          (None, 56, 56, 256)       0         
_________________________________________________________________
average_pooling2d_2 (Average (None, 28, 28, 256)       0         
_________________________________________________________________
conv2d_7 (Conv2D)            (None, 28, 28, 512)       1180160   
_________________________________________________________________
dropout_7 (Dropout)          (None, 28, 28, 512)       0         
_________________________________________________________________
conv2d_8 (Conv2D)            (None, 28, 28, 512)       2359808   
_________________________________________________________________
dropout_8 (Dropout)          (None, 28, 28, 512)       0         
_________________________________________________________________
conv2d_9 (Conv2D)            (None, 28, 28, 512)       2359808   
_________________________________________________________________
dropout_9 (Dropout)          (None, 28, 28, 512)       0         
_________________________________________________________________
average_pooling2d_3 (Average (None, 14, 14, 512)       0         
_________________________________________________________________
conv2d_10 (Conv2D)           (None, 14, 14, 512)       2359808   
_________________________________________________________________
dropout_10 (Dropout)         (None, 14, 14, 512)       0         
_________________________________________________________________
conv2d_11 (Conv2D)           (None, 14, 14, 512)       2359808   
_________________________________________________________________
dropout_11 (Dropout)         (None, 14, 14, 512)       0         
_________________________________________________________________
conv2d_12 (Conv2D)           (None, 14, 14, 512)       2359808   
_________________________________________________________________
dropout_12 (Dropout)         (None, 14, 14, 512)       0         
_________________________________________________________________
average_pooling2d_4 (Average (None, 7, 7, 512)         0         
=================================================================
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0
________________________________________________________________
# 加载VGG16的预训练模型参数
VGG16_model.load_weights('./vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5')
# 冻结前13层网络参数  保证加载的预训练参数不被改变
for layer in VGG16_model.layers[:13]:
    layer.trainable = False
model = models.Sequential([
    VGG16_model,
    layers.Flatten(),                       
    layers.Dense(1024, activation='relu'), 
    layers.BatchNormalization(),
    layers.Dropout(0.4), 
    layers.Dense(128, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.4), 
    layers.Dense(len(class_names), activation="softmax")               
])
model.summary()  # 打印网络结构
Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
sequential (Sequential)      (None, 7, 7, 512)         14714688  
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
dense (Dense)                (None, 1024)              25691136  
_________________________________________________________________
batch_normalization (BatchNo (None, 1024)              4096      
_________________________________________________________________
dropout_13 (Dropout)         (None, 1024)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 128)               131200    
_________________________________________________________________
batch_normalization_1 (Batch (None, 128)               512       
_________________________________________________________________
dropout_14 (Dropout)         (None, 128)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 17)                2193      
=================================================================
Total params: 40,543,825
Trainable params: 39,986,193
Non-trainable params: 557,632
________________________________________________________________

四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:


损失函数(loss):用于衡量模型在训练期间的准确率。

优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。

指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

1.设置动态学习率

# 设置初始学习率
initial_learning_rate = 0.0001
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=60,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.98,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)
# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
model.compile(optimizer=optimizer,
              loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

损失函数Loss详解:


binary_crossentropy(对数损失函数)

       与 sigmoid 相对应的损失函数,针对于二分类问题。


categorical_crossentropy(多分类的对数损失函数)

       与 softmax 相对应的损失函数,如果是one-hot编码,则使用 categorical_crossentropy


sparse_categorical_crossentropy(稀疏性多分类的对数损失函数)

       与 softmax 相对应的损失函数,如果是整数编码,则使用 sparse_categorical_crossentropy

2.早停与保存最佳模型参数

关于ModelCheckpoint的详细介绍可参考文章 🔗ModelCheckpoint 讲解【TensorFlow2入门手册】


EarlyStopping()参数说明:


monitor: 被监测的数据。

min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。

patience: 没有进步的训练轮数,在这之后训练就会被停止。

verbose: 详细信息模式。

mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。

baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。

estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。关于EarlyStopping()的详细介绍可参考文章 🔗早停 tf.keras.callbacks.EarlyStopping() 详解【TensorFlow2入门手册】

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
epochs = 100
# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)
# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=20, 
                             verbose=1)

3. 模型训练

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])

Epoch 00064: val_accuracy did not improve from 0.80000

Epoch 00064: early stopping

五、模型评估

1. Loss与Accuracy图

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(len(loss))
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

# 加载效果最好的模型权重
model.load_weights('best_model.h5')
from PIL import Image
import numpy as np
img = np.array(Image.open("./hlw/Jennifer Lawrence/001_21a7d5e6.jpg"))  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])
img_array = tf.expand_dims(image, 0) 
predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

预测结果为: Jennifer Lawrence

结论:

以下方法各只简单尝试了1次:


CNN + AveragePooling2D : 0.37778 (只有简单几层)

CNN + MaxPooling2D : 0.41111 (只有简单几层)

VGG16 + MaxPooling2D : 0.46667 (早停)

VGG16 + AveragePooling2D : 0.48777 (跑完100次)

Loss与Accuracy图上来看,该数据集VGG16 使用 AveragePooling2D效果更好一点。

该模型过于过拟合。后面进行优化,尝试如上文章模型,加入预训练模型参数,效果提升很大,居然有0.8了。

此外在卷积中加入Drop层甚至有反效果,加入BN层后精度提升。

Drop_rate=0,weight_decay = 0 时效果最好。


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
5月前
|
人工智能 算法 数据安全/隐私保护
无表情人脸预测政治信仰,AI准确率惊人!斯坦福研究登国际顶刊
【8月更文挑战第10天】斯坦福大学的研究揭示了面部识别技术的新应用:通过分析无表情人脸图片预测政治倾向。研究在《American Psychologist》发表,表明人类评估者与AI均能在控制人口统计学特征的情况下准确预测政治取向,相关系数分别为0.21和0.22。利用年龄、性别和种族信息时,算法准确性提升至0.31。研究还发现保守派倾向于有更大的下半部面部。尽管成果引人注目,但其局限性和潜在的隐私问题仍需审慎考量。
151 62
|
5月前
|
机器学习/深度学习 人工智能
清华研究登Nature,首创全前向智能光计算训练架构,戴琼海、方璐领衔
【8月更文挑战第30天】清华大学研究人员在《自然》杂志上发表了一项开创性成果,提出了一种全前向智能光计算训练架构,解决了传统光学AI方法依赖电子计算机模拟和优化的问题,实现了光学系统的自学习和自设计。该架构通过将光学系统映射到参数化神经网络中,消除了反向传播需求,展示了在多个领域的广泛应用前景,如深度光学神经网络和高分辨率散射成像等。这一成果为光学AI的发展开辟了新道路,但实际应用中仍需克服一些挑战。论文详情见:https://www.nature.com/articles/s41586-024-07687-4
57 2
|
8月前
|
物联网
ChilloutMix几个模型的区别——专注东方面孔人像生成
ChilloutMix几个模型的区别——专注东方面孔人像生成
938 0
|
机器学习/深度学习 数据可视化 数据挖掘
CVPR 2023|哈工大南洋理工提出全球首个「多模态DeepFake检测定位」模型:让AIGC伪造无处可藏
CVPR 2023|哈工大南洋理工提出全球首个「多模态DeepFake检测定位」模型:让AIGC伪造无处可藏
286 0
|
机器学习/深度学习 人工智能 编解码
DeepFake换头术升级:浙大新模型,GAN出一头秀发
DeepFake换头术升级:浙大新模型,GAN出一头秀发
305 0
|
机器学习/深度学习 并行计算 数据可视化
pytorch实现好莱坞明星识别
pytorch实现好莱坞明星识别
pytorch实现好莱坞明星识别
|
机器学习/深度学习 编解码 人工智能
大淘宝技术斩获NTIRE视频增强和超分比赛冠军(内含夺冠方案)
大淘宝技术斩获NTIRE视频增强和超分比赛冠军(内含夺冠方案)
713 0
|
机器学习/深度学习 人工智能 算法
全球女性福音!DeepHealth深度学习模型检测乳腺癌完胜5名放射科医师
深度学习在乳腺癌检测上再获突破!DeepHealth与全球多个知名机构合作,研发出的深度模型在乳腺癌诊断水平上完胜5名全日制放射科医师。该模型也可广泛适用于中国人群,有望全面提升全球女性乳腺癌筛查准确性。
205 0
全球女性福音!DeepHealth深度学习模型检测乳腺癌完胜5名放射科医师
|
机器学习/深度学习 人工智能 算法
给图片打「马赛克」可骗过AI视觉系统,阿里安全新研究入选ICCV 2021
来自阿里安全人工智能治理与可持续发展实验室(AAIG)等机构的研究者提出了一个新的机制来生成对抗样本,即与增加对抗扰动相反,他们通过扔掉一些不可察觉的图像细节来生成对抗样本。这项研究成果已被 AI 顶会 ICCV 2021 收录。
364 0
给图片打「马赛克」可骗过AI视觉系统,阿里安全新研究入选ICCV 2021
|
机器学习/深度学习 编解码 算法
图鸭科技获CVPR 2018图像压缩挑战赛单项冠军,技术解读端到端图像压缩框架
CHALLENGE ON LEARNED IMAGE COMPRESSION 挑战赛由 Google、Twitter、Amazon 等公司联合赞助,是第一个由计算机视觉领域的会议发起的图像压缩挑战赛,旨在将神经网络、深度学习等一些新的方式引入到图像压缩领域。据 CVPR 大会官方介绍,此次挑战赛分别从 PSNR 和主观评价两个方面去评估参赛团队的表现。
264 0
图鸭科技获CVPR 2018图像压缩挑战赛单项冠军,技术解读端到端图像压缩框架