基于matlab的球形译码的理论原理和仿真结果,对比2norm球形译码,无穷范数球形译码,ML检测

简介: 基于matlab的球形译码的理论原理和仿真结果,对比2norm球形译码,无穷范数球形译码,ML检测

1.算法描述

   多输入多输出(MIMO)系统通过使用考虑了时间和频率资源,多个用户,多个天线和其他资源的多个维度,可以增强通信系统的性能。在提高性能的同时,由于检测问题是NP-Complete,因此这些系统在检测方面提出了困难的计算挑战,并且对具有多项式复杂度的次优解决方案的需求也在不断增长。

   机器学习领域的最新进展,特别是深度神经网络在解决几乎任何工程领域的许多问题方面的成功,表明使用机器学习进行数据驱动的检测方法可能会提供一种计算效率高的方法,以实现接近最佳的检测精度。

A. MIMO检测

   MIMO检测是简单假设检验中的经典问题[1]。 最大似然(ML)检测器涉及穷举搜索,并且在最小误差联合误差的意义上是最佳检测器,用于同时检测所有符号。 不幸的是,它具有指数级的运行时复杂性,这使其在大型实时系统中不切实际。

   为了克服最大似然解码器的计算成本,人们对实现次优检测算法非常感兴趣,该算法提供了更好,更灵活的精度与复杂度的权衡。在高精度条件下,球面解码算法[2] [3],[4]贝提出,基于晶格搜索,并提供了更好的计算复杂度,相对于完整搜索而言,其准确性会降低。 在另一种情况下,最常见的次优检测器是线性接收器,即匹配滤波器(MF),解相关器或迫零检测器(ZF)和最小均方误差(MMSE)检测器。 更高级的检测器基于决策反馈均衡(DFE),近似消息传递(AMP)[5]和半确定松弛(SDR)[6],[7]。当前,在许多实际情况下,AMP和SDR均可提供接近最佳的精度。AMP在实践中实现起来简单且便宜,但是它是一种迭代方法,可能会在挑战性环境中产生差异。SDR更加健壮,具有多项式复杂性,但是它所解决的设置受到限制,并且在实践中要慢得多

   球形译码的基本思想是在以一个矢量x 为中心的半径为d的多维球内搜索格点,通过限制或者减少搜索半径从而减少搜索的点数,进而使得计算时间减少。球形译码算法带来的优点在于它不需要象传统的最大似然译码算法那样需要在整个格内对所有的格点进行搜索,而只需要在一个事先设定的有限球形区域进行搜索,如果该区域所包含的点数相对于整个格内的总点数是相当小的,搜索时间就会大大减少。

   影响球形译码的关键问题有:(1) 怎样选择搜索半径d。如果d太大,则球内会包含太多的点,复杂度就会接近或者达到最大似然译码的指数级复杂度。如果d 太小,则球内可能一个格点都不包含,那么球形译码算法将得不到合理的解。(2) 怎样才能判断一个点是否在球内。如果这种判断需要借助每一个格点和矢量之间的距离来判断的话,那么这种方法就不太理想,因为我们需要考察所有的点,所产生的计算量也是指数级的。

   球形译码解决了第2个问题,此处均考虑信号为实数,因为复数可以通过增加一倍的维数,将实部和虚部分开,要判断一个点是否在半径为d的m维球内比较困难。若将m变为1,则从球退化为一个间距,这个点就相当于某根天线发送信号的实部或虚部,这样操作就简单很多,可以知道这个点是否在这个距离内。多根发送天线上的信号的实部和虚部分成很多维,每一维上有可能取值。球形译码算法相当于构建了一棵树,树的第k层节点对应的是落在半径为d,维数为k的球内的格点。

1.png

   如果要求性能完全符合最大似然检测的性能,则初始半径必须是一系列的值,选定初始值为d,如果在范围为d时寻找不到合适的点,则需要增大d的值,扩大的倍数为2倍;如果要求性能接近于最大似然检测的性能,则初始半径相比上面,要取较大,必须有一定的冗余。

   对于只要求性能接近最大似然检测的性能的二范数的球形译码,初始半径的选取有公式如下:

2.png
3.png

对于性能要求达到最大似然检测的性能的二范数的球形译码,初始半径的的选取有公式如下:

4.png
5.png

2.仿真效果预览
matlab2022A仿真结果如下:
6.png
7.png

3.MATLAB部分代码预览

        h=modem.qammod('M',mod_num,'InputType','bit','symbolorder','Gray');%qam调制
        s=modulate(h,msg);
        constelPoints=[1+j 1-j -1+j -1-j];                      %$ for ML detect
  %     constelPoints=[-3-3*j -3-j -3+3*j -3+j -1-3*j -1-j -1+3*j -1+j 3-3*j 3-j 3+3*j 3+j 1-3*j 1-j 1+3*j 1+j]; 
        s1=[real(s);imag(s)];                                    %s1为信号的实矩阵
        s2=reshape(s,Nt,Number/2);                               %s2为信号的Nt行的复矩阵
        if mod_num==4
           codebook=[-1 1];                                       %表示在变为实矩阵后,4qam只有两种情况1和-1 
        end
        if mod_num==16                                          %表示在变为实矩阵后,16qam有4种情况
           codebook=[-3 -1 1 3]; 
        end   
        ss=reshape(s1,2*Nt,Number/2);                            %ss为信号的2*Nt行的实矩阵  
%       H=[real(H1(:,:,round)) -imag(H1(:,:,round));imag(H1(:,:,round)) real(H1(:,:,round))];                %将信道复矩阵变为信道实矩阵 
 
 
%/%
       r1=H1(:,:,round)*s2;                                 
       for ii=1:Nt                                              %添加噪声
           rr(ii,:)=awgn(r1(ii,:),snr_1(ISNR),'measured');
       end                                                      %rr为接收复信号 
     
       C1=3*(2*Nt)*2*(2/(10^(snr(ISNR)/10)));                                   %初始半径 二范数4qam
       C2=16*2*(2/(10^(snr(ISNR)/10)));                                      %初始半径无穷范数
 
       rev1=[real(rr);imag(rr)];                                      %rr转变为实信号
       H=[real(H1(:,:,round)) -imag(H1(:,:,round));imag(H1(:,:,round)) real(H1(:,:,round))];              %信道实矩阵
     
     
       for tmp=1:Number/2                                            %二范数球形译码
           rev=rev1(:,tmp);   
           tic
           y_2norm_temp = spheredecode(rev, C1, H, codebook);
           for jj=1:Nt
               y_2norm(Nt*tmp+jj-Nt)=y_2norm_temp(jj)+j*y_2norm_temp(jj+Nt);                 %存储为复数形式
           end
           t1(ISNR)=toc+t1(ISNR); 
       end   
     
       H=[real(H1(:,:,round)) -imag(H1(:,:,round));imag(H1(:,:,round)) real(H1(:,:,round))];              %信道实矩阵
       for tmp=1:Number/2                                            %二范数球形译码
           rev=rev1(:,tmp);   
           tic
           y_infnorm_temp = spheredecodeinf(rev, C2, H, codebook);    
           for jj=1:Nt
               y_infnorm(Nt*tmp+jj-Nt)= y_infnorm_temp(jj)+j* y_infnorm_temp(jj+Nt);                 %存储为复数形式
           end
           t2(ISNR)=toc+t2(ISNR); 
       end   
     
     
     
       for tmp=1:Number/2
           min=100000;
           tic
           for flag1=1:mod_num
               for flag2=1:mod_num
                   for flag3=1:mod_num
                       for flag4=1:mod_num
                           stmp=[constelPoints(flag1);constelPoints(flag2);constelPoints(flag3);constelPoints(flag4)];
                           rtmp=rr(:,tmp);
                           Maximum=norm(rtmp-H1(:,:,round)*stmp); 
                           if Maximum<min
                              min=Maximum;
                              slast=stmp;
                           end    
                       end
                   end
               end
           end  
           for jj=1:Nt        
               y_ML(Nt*tmp+jj-Nt)=slast(jj);
           end     
           t3(ISNR)=toc+t3(ISNR); 
        end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
       h=modem.qamdemod('M',mod_num,'OutputType','bit','symbolorder','Gray');   %第二范数
       DM1_msg=demodulate(h,y_2norm);
       DM_msg=reshape(DM1_msg,log2(mod_num),Nt*Number/2);
       [number,ratio] = biterr(msg,DM_msg);  
 
       h=modem.qamdemod('M',mod_num,'OutputType','bit','symbolorder','Gray');
       DM3_msg=demodulate(h,y_infnorm);
       DM2_msg=reshape(DM3_msg,log2(mod_num),Nt*Number/2);
       [number1,ratio1] = biterr(msg,DM2_msg);                           %无穷范数  
 
       h=modem.qamdemod('M',mod_num,'OutputType','bit','symbolorder','Gray');
       DM5_msg=demodulate(h,y_ML);
       DM4_msg=reshape(DM5_msg,log2(mod_num),Nt*Number/2);
       [number2,ratio2] = biterr(msg,DM4_msg);                           %ML 
   
       sumber=sumber+ratio;  
       sumber1=sumber1+ratio1;
       sumber2=sumber2+ratio2;   
    end %round=1:SymTime
    avrgber(ISNR)=sumber/SymTime;
    avrgber1(ISNR)=sumber1/SymTime;
    avrgber2(ISNR)=sumber2/SymTime;
A_034
相关文章
|
1天前
|
机器学习/深度学习 存储 算法
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络
该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于DCT变换和位平面分解的数字水印嵌入提取算法matlab仿真
这是一个关于数字水印算法的摘要:使用MATLAB2022a实现,结合DCT和位平面分解技术。算法先通过DCT变换将图像转至频域,随后利用位平面分解嵌入水印,确保在图像处理后仍能提取。核心程序包括水印嵌入和提取,以及性能分析部分,通过PSNR和NC指标评估水印在不同噪声条件下的鲁棒性。
|
3天前
|
机器学习/深度学习 算法 安全
m基于Qlearning强化学习工具箱的网格地图路径规划和避障matlab仿真
MATLAB 2022a中实现了Q-Learning算法的仿真,展示了一种在动态环境中进行路线规划和避障的策略。Q-Learning是强化学习的无模型方法,通过学习动作价值函数Q(s,a)来优化智能体的行为。在路线问题中,状态表示智能体位置,动作包括移动方向。通过正负奖励机制,智能体学会避开障碍物并趋向目标。MATLAB代码创建了Q表,设置了学习率和ε-贪心策略,并训练智能体直至达到特定平均奖励阈值。
36 15
|
3天前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
4天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的32QAM解调算法matlab性能仿真
```markdown - 32QAM解调算法运用BP神经网络在matlab2022a中实现,适应复杂通信环境。 - 网络结构含输入、隐藏和输出层,利用梯度下降法优化,以交叉熵损失最小化为目标训练。 - 训练后,解调通过前向传播完成,提高在噪声和干扰中的数据恢复能力。 ``` 请注意,由于字符限制,部分详细信息(如具体图示和详细步骤)未能在摘要中包含。
|
18天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
18天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
18天前
|
算法 调度
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
|
18天前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章