2. 三大特性
面向对象编程在很多语言中都存在,这种编程方式有三大特性:封装、继承、多态。
2.1 封装
封装主要体现在两个方面:
- 将同一类方法封装到了一个类中,例如上述示例中:匪徒的相关方法都写在Terrorist类中;警察的相关方法都写在Police类中。
- 将数据封装到了对象中,在实例化一个对象时,可以通过
__init__
初始化方法在对象中封装一些数据,便于以后使用。
2.2 继承
传统的理念中有:儿子可以继承父亲的财产。
在面向对象中也有这样的理念,即:子类可以继承父类中的方法和类变量(不是拷贝一份,父类的还是属于父类,子类可以继承而已)。
父类
子类
基类
派生类
class Base: def func(self): print("Base.func") class Son(Base): def show(self): print("Son.show") s1 = Son() s1.show() s1.func() # 优先在自己的类中找,自己没有才去父类。 s2 = Base() s2.func() class Base: def f1(self): pass class Foo(Base): def f2(self): pass class Bar(Base): def f3(self): pass o1 = Foo() o1.f2() o1.f1()
练习题
class Base: def f1(self): print('base.f1') class Foo(Base): def f2(self): print('foo.f2') obj = Foo() obj.f1() obj.f2() class Base: def f1(self): print('base.f1') class Foo(Base): def f2(self): print('before') self.f1() # 调用了f1方法 obj.f1() print('foo.f2') obj = Foo() obj.f2() >>> before >>> base.f1 >>> foo.f2 class Base: def f1(self): print('base.f1') class Foo(Base): def f2(self): print("before") self.f1() # obj,Foo类创建出来的对象。 obj.f1 print('foo.f2') def f1(self): print('foo.f1') obj = Foo() obj.f1() # obj对象到底是谁?优先就会先去谁里面找。 obj.f2() >>> before >>> foo.f1 >>> foo.f2
class Base: def f1(self): print('before') self.f2() # slef是obj对象(Foo类创建的对象) obj.f2 print('base.f1') def f2(self): print('base.f2') class Foo(Base): def f2(self): print('foo.f2') obj = Foo() obj.f1() # 优先去Foo类中找f1,因为调用f1的那个对象是Foo类创建出来的。 >>> before >>> foo.f2 >>> base.f1 b1 = Base() b1.f1() >>> before >>> base.f2 >>> base.f1
class TCPServer: def f1(self): print("TCPServer") class ThreadingMixIn: def f1(self): print("ThreadingMixIn") class ThreadingTCPServer(ThreadingMixIn, TCPServer): def run(self): print('before') self.f1() print('after') obj = ThreadingTCPServer() obj.run() >>> before >>> ThreadingMixIn >>> after
class BaseServer: def serve_forever(self, poll_interval=0.5): self._handle_request_noblock() def _handle_request_noblock(self): self.process_request(request, client_address) def process_request(self, request, client_address): pass class TCPServer(BaseServer): pass class ThreadingMixIn: def process_request(self, request, client_address): pass class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass obj = ThreadingTCPServer() obj.serve_forever()
小结:
- 执行对象.方法时,优先去当前对象所关联的类中找,没有的话才去她的父类中查找。
- Python支持多继承:先继承左边、再继承右边的。
- self到底是谁?去self对应的那个类中去获取成员,没有就按照继承关系向上查找 。
2.3 多态
多态,按字面翻译其实就是多种形态。
- 其他编程语言多态
- Python中多态
其他编程语言中,是不允许这样类编写的,例如:Java
class Cat{ public void eat() { System.out.println("吃鱼"); } } class Dog { public void eat() { System.out.println("吃骨头"); } public void work() { System.out.println("看家"); } } public class Test { public static void main(String[] args) { obj1 = Cat() obj2 = Cat() show(obj1) show(obj2) obj3 = Dog() show(obj3) } public static void show(Cat a) { a.eat() } }
abstract class Animal { abstract void eat(); } class Cat extends Animal { public void eat() { System.out.println("吃鱼"); } } class Dog extends Animal { public void eat() { System.out.println("吃骨头"); } public void work() { System.out.println("看家"); } } public class Test { public static void main(String[] args) { obj1 = Cat() show(obj1) obj2 = Dog() show(obj2) } public static void show(Animal a) { a.eat() } }
在java或其他语言中的多态是基于:接口 或 抽象类和抽象方法来实现,让数据可以以多种形态存在。
在Python中则不一样,由于Python对数据类型没有任何限制,所以他天生支持多态。
def func(arg): v1 = arg.copy() # 浅拷贝 print(v1) func("lbw") func([11,22,33,44]) class Email(object): def send(self): print("发邮件") class Message(object): def send(self): print("发短信") def func(arg): v1 = arg.send() print(v1) v1 = Email() func(v1) v2 = Message() func(v2)
在程序设计中,鸭子类型(duck typing)是动态类型的一种风格。在鸭子类型中,关注点在于对象的行为,能作什么;而不是关注对象所属的类型,例如:一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟可以被称为鸭子。
小结:
封装,将方法封装到类中 或 将数据封装到对象中,便于以后使用。
继承,将类中的公共的方法提取到基类中去实现。
多态,Python默认支持多态(这种方式称之为鸭子类型),最简单的基础下面的这段代码即可。
def func(arg): v1 = arg.copy() # 浅拷贝 print(v1) func("lbw") func([11,22,33,44])
3. 扩展:再看数据类型
在初步了解面向对象之后,再来看看我们之前学习的:str、list、dict等数据类型,他们其实都一个类,根据类可以创建不同类的对象。
# 实例化一个str类的对象v1 v1 = str("lbw") # 通过对象执行str类中的upper方法。 data = v1.upper() print(data)
总结
类和对象的关系。
面向对象编程中常见的成员:
绑定方法
实例变量
self到底是什么?
面向对象的三大特性。
面向对象的应用场景
数据封装。
封装数据 + 方法再对数据进行加工处理。
创建同一类的数据且同类数据可以具有相同的功能(方法)。
补充:在Python3中编写类时,默认都会继承object(即使不写也会自动继承)。
class Foo:
pass
class Foo(object):
pass
这一点在Python2是不同的:
继承object,新式类
不继承object,经典类
面向对象进阶
目标:掌握面向对象进阶相关知识点,能沟通更加自如的使用面向对象来进行编程。
概要:
成员
变量
实例变量
类变量
方法
绑定方法
类方法
静态方法
属性
成员修饰符(公有/私有)
“对象嵌套”
特殊成员
1.成员
面向对象中的所有成员如下:
变量
实例变量
类变量
方法
绑定方法
类方法
静态方法
属性
通过面向对象进行编程时,会遇到很多种情况,也会使用不同的成员来实现,接下来我们来逐一介绍成员特性和应用场景。
1.1 变量
- 实例变量,属于对象,每个对象中各自维护自己的数据。
- 类变量,属于类,可以被所有对象共享,一般用于给对象提供公共数据(类似于全局变量)。
class Person(object): country = "中国" #类变量 def __init__(self, name, age): self.name = name self.age = age def show(self): # message = "{}-{}-{}".format(Person.country, self.name, self.age) message = "{}-{}-{}".format(self.country, self.name, self.age) print(message) print(Person.country) # 中国 p1 = Person("lbw",20) print(p1.name) print(p1.age) print(p1.country) # 中国 p1.show() # 中国-lbw-20
提示:当把每个对象中都存在的相同的示例变量时,可以选择把它放在类变量中,这样就可以避免对象中维护多个相同数据。
易错点 & 面试题
第一题:注意读和写的区别。
class Person(object): country = "中国" def __init__(self, name, age): self.name = name self.age = age def show(self): message = "{}-{}-{}".format(self.country, self.name, self.age) print(message) print(Person.country) # 中国 p1 = Person("lbw",20) print(p1.name) # lbw print(p1.age) # 20 print(p1.country) # 中国 p1.show() # 中国-lbw-20 p1.name = "root" # 在对象p1中讲name重置为root p1.num = 19 # 在对象p1中新增实例变量 num=19 p1.country = "china" # 在对象p1中新增实例变量 country="china" print(p1.country) # china print(Person.country) # 中国
class Person(object): country = "中国" def __init__(self, name, age): self.name = name self.age = age def show(self): message = "{}-{}-{}".format(self.country, self.name, self.age) print(message) print(Person.country) # 中国 Person.country = "美国" p1 = Person("lbw",20) print(p1.name) # lbw print(p1.age) # 20 print(p1.country) # 美国
第二题:继承关系中的读写
class Base(object): country = "中国" class Person(Base): def __init__(self, name, age): self.name = name self.age = age def show(self): message = "{}-{}-{}".format(Person.country, self.name, self.age) # message = "{}-{}-{}".format(self.country, self.name, self.age) print(message) # 读 print(Base.country) # 中国 print(Person.country) # 中国 obj = Person("lbw",19) print(obj.country) # 中国 # 写 Base.country = "china" #父类修改 Person.country = "泰国" #子类新增 obj.country = "日本" #子类的实例化对象新增
面试题
class Parent(object): x = 1 class Child1(Parent): pass class Child2(Parent): pass print(Parent.x, Child1.x, Child2.x) # 1 1 1 Child1.x = 2 print(Parent.x, Child1.x, Child2.x) # 1 2 1 Parent.x = 3 print(Parent.x, Child1.x, Child2.x) # 3 2 3
1.2 方法
绑定方法,默认有一个self参数,由对象进行调用(此时self就等于调用方法的这个对象)【对象&类均可调用】
类方法,默认有一个cls参数,用类或对象都可以调用(此时cls就等于调用方法的这个类)【对象&类均可调用】
静态方法,无默认参数,用类和对象都可以调用。【对象&类均可调用】
class Foo(object): def __init__(self, name,age): self.name = name self.age = age def f1(self): print("绑定方法", self.name) @classmethod def f2(cls): print("类方法", cls) @staticmethod def f3(): print("静态方法") # 绑定方法(对象) obj = Foo("lbw",20) obj.f1() # 或者Foo.f1(obj) # 类方法 Foo.f2() # cls就是当前调用这个方法的类。(类) obj.f2() # cls就是当前调用这个方法的对象的类。 # 静态方法 Foo.f3() # 类执行执行方法(类) obj.f3() # 对象执行执行方法
在Python中比较灵活,方法都可以通过对象和类进行调用;而在java、c#等语言中,绑定方法只能由对象调用;类方法或静态方法只能由类调用。
import os import requests class Download(object): def __init__(self, folder_path): self.folder_path = folder_path @staticmethod def download_dou_yin(): # 下载抖音 res = requests.get('.....') with open("xxx.mp4", mode='wb') as f: f.write(res.content) def download_dou_yin_2(self): # 下载抖音 res = requests.get('.....') path = os.path.join(self.folder_path, 'xxx.mp4') with open(path, mode='wb') as f: f.write(res.content) obj = Download("video") obj.download_dou_yin()
面试题:
在类中 @classmethod 和 @staticmethod 的作用?
1.3 属性
属性其实是由绑定方法 + 特殊装饰器 组合创造出来的,让我们以后在调用方法时可以不加括号,例如:
class Foo(object): def __init__(self, name): self.name = name def f1(self): return 123 @property def f2(self): return 123 obj = Foo("lbw") v1 = obj.f1() print(v1) v2 = obj.f2 print(v2)
示例:以之前开发的分页的功能。
class Pagination: def __init__(self, current_page, per_page_num=10): self.per_page_num = per_page_num if not current_page.isdecimal(): self.current_page = 1 return current_page = int(current_page) if current_page < 1: self.current_page = 1 return self.current_page = current_page def start(self): return (self.current_page - 1) * self.per_page_num def end(self): return self.current_page * self.per_page_num user_list = ["用户-{}".format(i) for i in range(1, 3000)] # 分页显示,每页显示10条 while True: page = input("请输入页码:") # page,当前访问的页码 # 10,每页显示10条数据 # 内部执行Pagination类的init方法。 pg_object = Pagination(page, 20) page_data_list = user_list[ pg_object.start() : pg_object.end() ] for item in page_data_list: print(item)
class Pagination: def __init__(self, current_page, per_page_num=10): self.per_page_num = per_page_num if not current_page.isdecimal(): self.current_page = 1 return current_page = int(current_page) if current_page < 1: self.current_page = 1 return self.current_page = current_page @property def start(self): return (self.current_page - 1) * self.per_page_num @property def end(self): return self.current_page * self.per_page_num user_list = ["用户-{}".format(i) for i in range(1, 3000)] # 分页显示,每页显示10条 while True: page = input("请输入页码:") pg_object = Pagination(page, 20) page_data_list = user_list[ pg_object.start : pg_object.end ] for item in page_data_list: print(item)
其实,除了咱们写的示例意外,在很多模块和框架的源码中也有porperty的身影,例如:requests模块。
import requests # 内部下载视频,并将下载好的数据分装到Response对象中。 res = requests.get( url="https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f240000buuer5aa4tij4gv6ajqg", headers={ "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 FS" } ) # 去对象中获取text,其实需要读取原始文本字节并转换为字符串 res.text
关于属性的编写有两种方式:
- 方式一,基于装饰器
class C(object): @property def x(self): pass @x.setter def x(self, value): pass @x.deleter def x(self): pass obj = C() obj.x obj.x = 123 del obj.x
方式二,基于定义变量
class C(object): def getx(self): pass def setx(self, value): pass def delx(self): pass x = property(getx, setx, delx, "I'm the 'x' property.") obj = C() obj.x obj.x = 123 del obj.x
Django源码一撇:
class WSGIRequest(HttpRequest): def __init__(self, environ): script_name = get_script_name(environ) # If PATH_INFO is empty (e.g. accessing the SCRIPT_NAME URL without a # trailing slash), operate as if '/' was requested. path_info = get_path_info(environ) or '/' self.environ = environ self.path_info = path_info # be careful to only replace the first slash in the path because of # http://test/something and http://test//something being different as # stated in https://www.ietf.org/rfc/rfc2396.txt self.path = '%s/%s' % (script_name.rstrip('/'), path_info.replace('/', '', 1)) self.META = environ self.META['PATH_INFO'] = path_info self.META['SCRIPT_NAME'] = script_name self.method = environ['REQUEST_METHOD'].upper() # Set content_type, content_params, and encoding. self._set_content_type_params(environ) try: content_length = int(environ.get('CONTENT_LENGTH')) except (ValueError, TypeError): content_length = 0 self._stream = LimitedStream(self.environ['wsgi.input'], content_length) self._read_started = False self.resolver_match = None def _get_scheme(self): return self.environ.get('wsgi.url_scheme') def _get_post(self): if not hasattr(self, '_post'): self._load_post_and_files() return self._post def _set_post(self, post): self._post = post @property def FILES(self): if not hasattr(self, '_files'): self._load_post_and_files() return self._files POST = property(_get_post, _set_post)
写在最后,对属性进行一个补充:
由于属性和实例变量的调用方式相同,所以在编写时需要注意:属性名称 不要 实例变量 重名。
class Foo(object): def __init__(self, name, age): self.name = name self.age = age @property def func(self): return 123 obj = Foo("lbw", 123) print(obj.name) print(obj.func)
一旦重名,可能就会有报错。
class Foo(object): def __init__(self, name, age): self.name = name # 报错,错认为你想要调用 @name.setter 装饰的方法。 self.age = age @property def name(self): return "{}-{}".format(self.name, self.age) obj = Foo("lbw", 123) class Foo(object): def __init__(self, name, age): self.name = name self.age = age @property def name(self): return "{}-{}".format(self.name, self.age) # 报错,循环调用自己(直到层级太深报错) @name.setter def name(self, value): print(value) obj = Foo("lbw", 123) print(obj.name)
如果真的想要在名称上创建一些关系,可以让实例变量加上一个下划线。
class Foo(object): def __init__(self, name, age): self._name = name self.age = age @property def name(self): return "{}-{}".format(self._name, self.age) obj = Foo("lbw", 123) print(obj._name) print(obj.name)
2.成员修饰符
Python中成员的修饰符就是指的是:公有、私有。
- 公有,在任何地方都可以调用这个成员。
- 私有,只有在类的内部才可以调用改成员(成员是以两个下划线开头,则表示该成员为私有)。
示例一:
class Foo(object): def __init__(self, name, age): self.__name = name self.age = age def get_data(self): return self.__name def get_age(self): return self.age obj = Foo("lbw", 123)
# 公有成员 print(obj.age) v1 = self.get_age() print(v1) # 私有成员 # print(obj.__name) # 错误,由于是私有成员,只能在类中进行使用。 v2 = obj.get_data() print(v2)
示例2:
class Foo(object): def get_age(self): print("公有的get_age") def __get_data(self): print("私有的__get_data方法") def proxy(self): print("公有的proxy") self.__get_data() obj = Foo() obj.get_age() obj.proxy()
示例3:
class Foo(object): @property def __name(self): print("公有的get_age") @property def proxy(self): print("公有的proxy") self.__name return 1 obj = Foo() v1 = obj.proxy print(v1)
特别提醒:父类中的私有成员,子类无法继承。
class Base(object): def __data(self): print("base.__data") def num(self): print("base.num") class Foo(Base): def func(self): self.num() self.__data() # # 不允许执行父类中的私有方法 obj = Foo() obj.func() #报错
class Base(object): def __data(self): print("base.__data") def num(self): print("base.num") self.__data() class Foo(Base): def func(self): self.num() obj = Foo() obj.func()#这样可以执行了
写在最后,按理说私有成员是无法被外部调用,但如果用一些特殊的语法也可以(Flask源码中有这种写法,大家写代码不推荐这样写)。
class Foo(object): def __init__(self): self.__num = 123 self.age = 19 def __msg(self): print(1234) obj = Foo() print(obj.age) print(obj._Foo__num) obj._Foo__msg()
成员是否可以作为独立的功能暴露给外部,让外部调用并使用。
- 可以,公有。
- 不可以,内部其他放的一个辅助,私有。
3.对象嵌套
在基于面向对象进行编程时,对象之间可以存在各种各样的关系,例如:组合、关联、依赖等(Java中的称呼),用大白话来说就是各种嵌套。
下面我们就用示例来学习常见的嵌套的情景:
情景一:
class Student(object): """ 学生类 """ def __init__(self, name, age): self.name = name self.age = age def message(self): data = "我是一名学生,我叫:{},我今年{}岁".format(self.name, self.age) print(data) s1 = Student("lbw", 19) s2 = Student("Alex", 19) s3 = Student("日天", 19) class Classes(object): """ 班级类 """ def __init__(self, title): self.title = title self.student_list = [] def add_student(self, stu_object): self.student_list.append(stu_object) def add_students(self, stu_object_list): for stu in stu_object_list: self.add_student(stu) def show_members(self): for item in self.student_list: # print(item) item.message() c1 = Classes("三年二班") c1.add_student(s1) c1.add_students([s2, s3]) print(c1.title) print(c1.student_list)
情景二:
class Student(object): """ 学生类 """ def __init__(self, name, age, class_object): self.name = name self.age = age self.class_object = class_object def message(self): data = "我是一名{}班的学生,我叫:{},我今年{}岁".format(self.class_object.title, self.name, self.age) print(data) class Classes(object): """ 班级类 """ def __init__(self, title): self.title = title c1 = Classes("Python全栈") c2 = Classes("Linux云计算") user_object_list = [ Student("lbw", 19, c1), Student("Alex", 19, c1), Student("日天", 19, c2) ] for obj in user_object_list: print(obj.name,obj.age, obj.class_object.title)
情景三:
class Student(object): """ 学生类 """ def __init__(self, name, age, class_object): self.name = name self.age = age self.class_object = class_object def message(self): data = "我是一名{}班的学生,我叫:{},我今年{}岁".format(self.class_object.title, self.name, self.age) print(data) class Classes(object): """ 班级类 """ def __init__(self, title, school_object): self.title = title self.school_object = school_object class School(object): """ 学校类 """ def __init__(self, name): self.name = name s1 = School("北京校区") s2 = School("上海校区") c1 = Classes("Python全栈", s1) c2 = Classes("Linux云计算", s2) user_object_list = [ Student("lbw", 19, c1), Student("Alex", 19, c1), Student("日天", 19, c2) ] for obj in user_object_list: print(obj.name, obj.class_object.title , obj.class_object.school_object.name)
4.特殊成员
在Python的类中存在一些特殊的方法,这些方法都是 __方法__
格式,这种方法在内部均有特殊的含义,接下来我们来讲一些常见的特殊成员:
__init__
,初始化方法
class Foo(object): def __init__(self, name): self.name = name obj = Foo("lbw")
__new__
,构造方法
class Foo(object): def __init__(self, name): print("第二步:初始化对象,在空对象中创建数据") self.name = name def __new__(cls, *args, **kwargs): print("第一步:先创建空对象并返回") return object.__new__(cls) obj = Foo("lbw")
__call__
class Foo(object): def __call__(self, *args, **kwargs): print("执行call方法") obj = Foo() obj()
__str__
class Foo(object): def __str__(self): return "哈哈哈哈" obj = Foo() data = str(obj) print(data)
__dict__
class Foo(object): def __init__(self, name, age): self.name = name self.age = age obj = Foo("lbw",19) print(obj.__dict__)
__getitem__
、__setitem__
、__delitem__
class Foo(object): def __getitem__(self, item): pass def __setitem__(self, key, value): pass def __delitem__(self, key): pass obj = Foo("lbw", 19) obj["x1"] obj['x2'] = 123 del obj['x3']
__enter__
、__exit__
class Foo(object): def __enter__(self): print("进入了") return 666 def __exit__(self, exc_type, exc_val, exc_tb): print("出去了") obj = Foo() with obj as data: print(data)
超前知识:数据连接,每次对远程的数据进行操作时候都必须经历。
1.连接 = 连接数据库
2.操作数据库
3.关闭连接
class SqlHelper(object): def __enter__(self): self.连接 = 连接数据库 return 连接 def __exit__(self, exc_type, exc_val, exc_tb): self.连接.关闭 with SqlHelper() as 连接: 连接.操作.. with SqlHelper() as 连接: 连接.操作...
# 面试题(补充代码,实现如下功能) class Context: def do_something(self): print('内部执行') with Context() as ctx: print('内部执行') ctx.do_something() 上下文管理的语法。
__add__
等。
class Foo(object): def __init__(self, name): self.name = name def __add__(self, other): return "{}-{}".format(self.name, other.name) v1 = Foo("alex") v2 = Foo("sb") # 对象+值,内部会去执行 对象.__add__方法,并将+后面的值当做参数传递过去。 v3 = v1 + v2 print(v3)
__iter__
- 迭代器
# 迭代器类型的定义: 1.当类中定义了 __iter__ 和 __next__ 两个方法。 2.__iter__ 方法需要返回对象本身,即:self 3. __next__ 方法,返回下一个数据,如果没有数据了,则需要抛出一个StopIteration的异常。 官方文档:https://docs.python.org/3/library/stdtypes.html#iterator-types # 创建 迭代器类型 : class IT(object): def __init__(self): self.counter = 0 def __iter__(self): return self def __next__(self): self.counter += 1 if self.counter == 3: raise StopIteration() return self.counter # 根据类实例化创建一个迭代器对象: obj1 = IT() # v1 = obj1.__next__() # v2 = obj1.__next__() # v3 = obj1.__next__() # 抛出异常 v1 = next(obj1) # obj1.__next__() print(v1) v2 = next(obj1) print(v2) v3 = next(obj1) print(v3) obj2 = IT() for item in obj2: # 首先会执行迭代器对象的__iter__方法并获取返回值,一直去反复的执行 next(对象) print(item) 迭代器对象支持通过next取值,如果取值结束则自动抛出StopIteration。 for循环内部在循环时,先执行__iter__方法,获取一个迭代器对象,然后不断执行的next取值(有异常StopIteration则终止循环)。
生成器
# 创建生成器函数 def func(): yield 1 yield 2 # 创建生成器对象(内部是根据生成器类generator创建的对象),生成器类的内部也声明了:__iter__、__next__ 方法。 obj1 = func() v1 = next(obj1) print(v1) v2 = next(obj1) print(v2) v3 = next(obj1) print(v3) obj2 = func() for item in obj2: print(item) 如果按照迭代器的规定来看,其实生成器类也是一种特殊的迭代器类(生成器也是一个中特殊的迭代器)
可迭代对象
# 如果一个类中有__iter__方法且返回一个迭代器对象 ;则我们称以这个类创建的对象为可迭代对象。 class Foo(object): def __iter__(self): return 迭代器对象(生成器对象) obj = Foo() # obj是 可迭代对象。 # 可迭代对象是可以使用for来进行循环,在循环的内部其实是先执行 __iter__ 方法,获取其迭代器对象,然后再在内部执行这个迭代器对象的next功能,逐步取值。 for item in obj: pass class IT(object): def __init__(self): self.counter = 0 def __iter__(self): return self def __next__(self): self.counter += 1 if self.counter == 3: raise StopIteration() return self.counter class Foo(object): def __iter__(self): return IT() obj = Foo() # 可迭代对象 for item in obj: # 循环可迭代对象时,内部先执行obj.__iter__并获取迭代器对象;不断地执行迭代器对象的next方法。 print(item)
# 基于可迭代对象&迭代器实现:自定义range class IterRange(object): def __init__(self, num): self.num = num self.counter = -1 def __iter__(self): return self def __next__(self): self.counter += 1 if self.counter == self.num: raise StopIteration() return self.counter class Xrange(object): def __init__(self, max_num): self.max_num = max_num def __iter__(self): return IterRange(self.max_num) obj = Xrange(100) for item in obj: print(item) class Foo(object): def __iter__(self): yield 1 yield 2 obj = Foo() for item in obj: print(item) # 基于可迭代对象&生成器 实现:自定义range
class Xrange(object): def __init__(self, max_num): self.max_num = max_num def __iter__(self): counter = 0 while counter < self.max_num: yield counter counter += 1 obj = Xrange(100) for item in obj: print(item) 常见的数据类型: v1 = list([11,22,33,44]) v1是一个可迭代对象,因为在列表中声明了一个 __iter__ 方法并且返回一个迭代器对象。 from collections.abc import Iterator, Iterable v1 = [11, 22, 33] print( isinstance(v1, Iterator) ) # false,判断是否是迭代器;判断依据是__iter__ 和 __next__。 v2 = v1.__iter__() print( isinstance(v2, Iterator) ) # True v1 = [11, 22, 33] print( isinstance(v1, Iterable) ) # True,判断依据是是否有 __iter__且返回迭代器对象。 v2 = v1.__iter__() print( isinstance(v2, Iterable) ) # True,判断依据是是否有 __iter__且返回迭代器对象。
总结
- 面向对象编程中的成员
- 变量
- 实例变量
- 类变量
- 方法 - 绑定方法 - 类方法 - 静态方法
- 属性
- 成员修饰符
- 对象中的数据嵌套
- 特殊成员
- 重要概念:
- 迭代器
- 生成器
- 可迭代对象