Description
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
描述
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组。如果不存在符合条件的连续子数组,返回 0。
示例:
输入: s = 7, nums = [2,3,1,2,4,3]
输出: 2
解释: 子数组 [4,3] 是该条件下的长度最小的连续子数组。
进阶:
如果你已经完成了O(n) 时间复杂度的解法, 请尝试 O(n log n) 时间复杂度的解法。
思路
- 使用两个指针left和right,用_sum来表示当前的和. right不断向右移动,_sum累加,当_sum大于等于s的时候,left向右移动直到_sum小于s,有效长度为right-left+2,返回所有有效长度的最小值即可.
# -*- coding: utf-8 -*- # @Author: 何睿 # @Create Date: 2019-01-22 11:37:16 # @Last Modified by: 何睿 # @Last Modified time: 2019-01-22 11:37:16 import sys class Solution: def minSubArrayLen(self, s, nums): """ :type s: int :type nums: List[int] :rtype: int """ # 初始化长度 length = sys.maxsize _sum, left, right = 0, 0, 0 while right < len(nums): _sum += nums[right] # 如果当前的和已经大于等于s if _sum >= s: # 我们将左指针向右移动,和小于s时跳出 while _sum >= s and left <= right: _sum -= nums[left] left += 1 # 更新长度 length = min(right - left + 2, length) right += 1 # 如果length始终没有发生改变返回0,否则返回length本身 return length if length != sys.maxsize else 0
源代码文件在这里.