LeetCode Contest 178-1368. 使网格图至少有一条有效路径的最小代价 Minimum Cost to Make at Least One Valid Path in a Grid
目录
一、中文版
给你一个 m x n 的网格图 grid 。 grid 中每个格子都有一个数字,对应着从该格子出发下一步走的方向。 grid[i][j] 中的数字可能为以下几种情况:
1 ,下一步往右走,也就是你会从 grid[i][j] 走到 grid[i][j + 1]
2 ,下一步往左走,也就是你会从 grid[i][j] 走到 grid[i][j - 1]
3 ,下一步往下走,也就是你会从 grid[i][j] 走到 grid[i + 1][j]
4 ,下一步往上走,也就是你会从 grid[i][j] 走到 grid[i - 1][j]
注意网格图中可能会有 无效数字 ,因为它们可能指向 grid 以外的区域。
一开始,你会从最左上角的格子 (0,0) 出发。我们定义一条 有效路径 为从格子 (0,0) 出发,每一步都顺着数字对应方向走,最终在最右下角的格子 (m - 1, n - 1) 结束的路径。有效路径 不需要是最短路径 。
你可以花费 cost = 1 的代价修改一个格子中的数字,但每个格子中的数字 只能修改一次 。
请你返回让网格图至少有一条有效路径的最小代价。
示例 1:
输入:grid = [[1,1,1,1],[2,2,2,2],[1,1,1,1],[2,2,2,2]]
输出:3
解释:你将从点 (0, 0) 出发。
到达 (3, 3) 的路径为: (0, 0) --> (0, 1) --> (0, 2) --> (0, 3) 花费代价 cost = 1 使方向向下 --> (1, 3) --> (1, 2) --> (1, 1) --> (1, 0) 花费代价 cost = 1 使方向向下 --> (2, 0) --> (2, 1) --> (2, 2) --> (2, 3) 花费代价 cost = 1 使方向向下 --> (3, 3)
总花费为 cost = 3.
示例 2:
输入:grid = [[1,1,3],[3,2,2],[1,1,4]]
输出:0
解释:不修改任何数字你就可以从 (0, 0) 到达 (2, 2) 。
示例 3:
输入:grid = [[1,2],[4,3]]
输出:1
示例 4:
输入:grid = [[2,2,2],[2,2,2]]
输出:3
示例 5:
输入:grid = [[4]]
输出:0
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 100
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-cost-to-make-at-least-one-valid-path-in-a-grid
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二、英文版
Given a m x n grid. Each cell of the grid has a sign pointing to the next cell you should visit if you are currently in this cell. The sign of grid[i][j] can be: 1 which means go to the cell to the right. (i.e go from grid[i][j] to grid[i][j + 1]) 2 which means go to the cell to the left. (i.e go from grid[i][j] to grid[i][j - 1]) 3 which means go to the lower cell. (i.e go from grid[i][j] to grid[i + 1][j]) 4 which means go to the upper cell. (i.e go from grid[i][j] to grid[i - 1][j]) Notice that there could be some invalid signs on the cells of the grid which points outside the grid. You will initially start at the upper left cell (0,0). A valid path in the grid is a path which starts from the upper left cell (0,0) and ends at the bottom-right cell (m - 1, n - 1) following the signs on the grid. The valid path doesn't have to be the shortest. You can modify the sign on a cell with cost = 1. You can modify the sign on a cell one time only. Return the minimum cost to make the grid have at least one valid path.
Example 1:
Input: grid = [[1,1,1,1],[2,2,2,2],[1,1,1,1],[2,2,2,2]] Output: 3 Explanation: You will start at point (0, 0). The path to (3, 3) is as follows. (0, 0) --> (0, 1) --> (0, 2) --> (0, 3) change the arrow to down with cost = 1 --> (1, 3) --> (1, 2) --> (1, 1) --> (1, 0) change the arrow to down with cost = 1 --> (2, 0) --> (2, 1) --> (2, 2) --> (2, 3) change the arrow to down with cost = 1 --> (3, 3) The total cost = 3.
Example 2:
Input: grid = [[1,1,3],[3,2,2],[1,1,4]] Output: 0 Explanation: You can follow the path from (0, 0) to (2, 2).
Example 3:
Input: grid = [[1,2],[4,3]] Output: 1 Example 4: Input: grid = [[2,2,2],[2,2,2]] Output: 3 Example 5: Input: grid = [[4]] Output: 0 Constraints: m == grid.length n == grid[i].length 1 <= m, n <= 100 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/minimum-cost-to-make-at-least-one-valid-path-in-a-grid 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
三、My answer
class Solution: # 按移动花费来 bfs 遍历图 def minCost(self, grid: List[List[int]]) -> int: m = len(grid) n = len(grid[0]) # 移动方向数组,index+1 = 题目里的编号 dirs = [(0,1), (0,-1),(1,0),(-1,0)] visited = set() # 为了简单一点没有用队列,使用了dict+list,key 为 cost,value 为下标组成的list # 表示从起始点到该list的中的点的花费为key值 costs = {0:[(0,0)]} cost = 0 # 按 cost 遍历,由于遍历是 costs 中的 cost 会增多,不写成 for cost in costs while cost in costs: for i,j in costs[cost]: # 目标点没有访问过 if (i,j) not in visited: visited.add((i,j)) # 到达终点结束 if i == m-1 and j == n-1: return cost # 求四个方向的消耗,并加入costs for val, d in enumerate(dirs): x = i + d[0] y = j + d[1] # 目标点合法,且没有访问过 if 0<=x<m and 0<=j<n and (x,y) not in visited: # 如果和i,j的方向一致则cost不变,否则加1 next_cost = cost + (0 if val+1 == grid[i][j] else 1) # 加入 costs if next_cost not in costs: costs[next_cost] = [] costs[next_cost].append((x,y)) cost += 1 return 0
四、解题报告
看到题目考虑bfs遍历图,可以从起始点出发,先走遍能直接连同的点。这些点相邻的点的cost就是1,再走遍所有cost为1点,他们相邻的点就是cost为2的点。以此类推,一直到终点,就返回其cost。如果一个点有多个cost,当然是取其中的最小值,实际表现出来就是已经走过的点不用再走一边了。
时间复杂的 O(m*n) 即 每一个点遍历一次;空间复杂度O(m*n) 。