利用python实现Apriori关联规则算法

简介: 利用python实现Apriori关联规则算法

关联规则

       大家可能听说过用于宣传数据挖掘的一个案例:啤酒和尿布;据说是沃尔玛超市在分析顾客的购买记录时,发现许多客户购买啤酒的同时也会购买婴儿尿布,于是超市调整了啤酒和尿布的货架摆放,让这两个品类摆放在一起;结果这两个品类的销量都有明显的增长;分析原因是很多刚生小孩的男士在购买的啤酒时,会顺手带一些婴幼儿用品。

不论这个案例是否是真实的,案例中分析顾客购买记录的方式就是关联规则分析法Association Rules。


关联规则分析也被称为购物篮分析,用于分析数据集各项之间的关联关系。


关联规则基本概念

项集:item的集合,如集合{牛奶、麦片、糖}是一个3项集,可以认为是购买记录里物品的集合。


频繁项集:顾名思义就是频繁出现的item项的集合。如何定义频繁呢?用比例来判定,关联规则中采用支持度和置信度两个概念来计算比例值


支持度:共同出现的项在整体项中的比例。以购买记录为例子,购买记录100条,如果商品A和B同时出现50条购买记录(即同时购买A和B的记录有50),那边A和B这个2项集的支持度为50%


置信度:购买A后再购买B的条件概率,根据贝叶斯公式,可如下表示:


提升度:为了判断产生规则的实际价值,即使用规则后商品出现的次数是否高于商品单独出现的评率,提升度和衡量购买X对购买Y的概率的提升作用。如下公式可见,如果X和Y相互独立那么提升度为1,提升度越大,说明X->Y的关联性越强




关联规则Apriori算法

1. Apriori算法的基本思想

对数据集进行多次扫描,第一次扫描得到频繁1-项集的集合L1,第k次扫描首先利用第k-1次扫描的结果Lk-1产生候选k-项集Ck,在扫描过程中计算Ck的支持度,在扫描结束后计算频繁k-项集Lk,算法当候选k-项集的集合Ck为空的时候结束。

2. Apriori算法产生频繁项集的过程

(1)连接步

(2)剪枝步


3.Apriori算法的主要步骤

(1) 扫描全部数据,产生候选1-项集的集合C1

(2) 根据最小支持度,由候选1-项集的集合C1产生频繁1-项集的集合L1

(3) 对k>1,重复步骤(4)(5)(6)

(4) 由Lk执行连接和剪枝操作,产生候选(k+1)-项集Ck+1

(5) 根据最小支持度,由候选(k+1)-项集的集合Ck+1产生频繁(k+1)-项集的集合Lk+1

(6) 若L不为空集,则k = k+1,跳往步骤(4),否则跳往步骤(7)

(7) 根据最小置信度,由频繁项集产生强关联规则


Apriori算法是经典的关联规则算法。Apriori算法的目标是找到最大的K项频繁集。Apriori算法从寻找1项集开始,通过最小支持度阈值进行剪枝,依次寻找2项集,3项集直到没有更过项集为止。


代码实现

本次算法实现我们借助了mlxtend第三方包,pip install mlxtend安装一下即可


编译工具:jupyter notebook


首先导入本次项目用到的第三方包:

import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
import warnings
warnings.filterwarnings('ignore')

接下来我将使用两个小案例给大家示范如何使用关联规则算法


案例一

准备数据

order = {'001': '面包,黄油,尿布,啤酒', 
        '002': '咖啡,糖,小甜饼,鲑鱼,啤酒',
        '003': '面包,黄油,咖啡,尿布,啤酒,鸡蛋', 
        '004': '面包,黄油,鲑鱼,鸡',
        '005': '鸡蛋,面包,黄油', 
        '006': '鲑鱼,尿布,啤酒',
        '007': '面包,茶,糖鸡蛋', 
        '008': '咖啡,糖,鸡,鸡蛋',
        '009': '面包,尿布,啤酒,盐', 
        '010': '茶,鸡蛋,小甜饼,尿布,啤酒'}
data_set = []
id_set= []
shopping_basket = {}
for key in order:
    item = order[key].split(',')
    id_set.append(key)
    data_set.append(item)
shopping_basket['ID'] = id_set
shopping_basket['Basket'] = data_set
shopping_basket



将数据转换为DataFrame类型

data = pd.DataFrame(shopping_basket)
data

接着我们需要将Basket的数据转换为one-hot(0,1)编码


这一步主要就是对数据的ID和Basket进行划分处理,最后进行合并

data_id = data.drop('Basket',1)
data_basket = data['Basket'].str.join(',')
data_basket = data_basket.str.get_dummies(',')
new_data = data_id.join(data_basket)
new_data


调用apriori算法


apriori()中min_support也就是最小支持度默认为0.5,所以我们要修改的话直接修改这个值

frequent_itemsets = apriori(new_data.drop('ID',1),min_support=0.5,use_colnames=True)
frequent_itemsets

从结果中,我们发现在二项集中,出现了尿布和啤酒,说明尿布和啤酒的关联性很大。


接着我们查看其具体的关联规则


association_rules(frequent_itemsets,metric='lift')


我们看出尿布和啤酒的提升度值也很大(大于1) ,更一步说明了尿布和啤酒的关联性很强,所有在销售的时候,应该将其放在一起售卖,或者适当增加一下促销方式。


案例二

步骤跟案例一相似


准备数据


shopping_backet = {'ID':[1,2,3,4,5,6],
                    'Basket':[['Beer','Diaper','Pretzels','Chips','Aspirin'],
                              ['Diaper','Beer','Chips','Lotion','Juice','BabyFood','Milk'],
                              ['Soda','Chips','Milk'],
                              ['Soup','Beer','Diaper','Milk','IceCream'],
                              ['Soda','Coffee','Milk','Bread'],
                              ['Beer','Chips']
                              ]
                    }
data = pd.DataFrame(shopping_backet)
data

将数据转换为apriori算法要求的数据类型

data_id = data.drop('Basket',1)
data_basket = data['Basket'].str.join(',')
data_basket = data_basket.str.get_dummies(',')
new_data = data_id.join(data_basket)
new_data

调用apriori算法

frequent_itemsets = apriori(new_data.drop('ID',1),min_support=0.5,use_colnames=True)
frequent_itemsets

如果光考虑support支持度,那么[Beer, Chips]和[Diaper, Beer]都是很频繁的,那么哪一种组合更相关呢?

association_rules(frequent_itemsets,metric='lift')

显然[Diaper, Beer]的lift值更大,说明这个组合更相关


目录
相关文章
|
2月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
4天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
16天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
61 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
59 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
20天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
36 2
|
29天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
37 3
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
63 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练