RLE格式分割标注文件格式转换【以Airbus Ship Detection Challenge为例】

简介: RLE格式分割标注文件格式转换【以Airbus Ship Detection Challenge为例】

RLE格式分割标注文件格式转换【以Airbus Ship Detection Challenge为例】


1.Airbus Ship Detection Challenge


url:www.kaggle.com/competition…

Find ships on satellite images as quickly as possible

Data Description

In this competition, you are required to locate ships in images, and put an aligned bounding box segment around the ships you locate. Many images do not contain ships, and those that do may contain multiple ships. Ships within and across images may differ in size (sometimes significantly) and be located in open sea, at docks, marinas, etc.

For this metric, object segments cannot overlap. There were a small percentage of images in both the Train and Test set that had slight overlap of object segments when ships were directly next to each other. Any segments overlaps were removed by setting them to background (i.e., non-ship) encoding. Therefore, some images have a ground truth may be an aligned bounding box with some pixels removed from an edge of the segment. These small adjustments will have a minimal impact on scoring, since the scoring evaluates over increasing overlap thresholds.

The train_ship_segmentations.csv file provides the ground truth (in run-length encoding format) for the training images. The sample_submission files contains the images in the test images.

Please click on each file / folder in the Data Sources section to get more information about the files.

kaggle competitions download -c airbus-ship-detection


2.数据展示


2.1 标注数据


该数据以csv格式存储,具体如下:

image.png


2.2 图象文件


image.pngimage.pngimage.png


3.格式转换


由于图太多,暂时转换10个

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np  # linear algebra
import pandas as pd  # data processing, CSV file I/O (e.g. pd.read_csv)
from PIL import Image
# ref: https://www.kaggle.com/paulorzp/run-length-encode-and-decode
# 将图片编码成rle格式
def rle_encode(img, min_max_threshold=1e-3, max_mean_threshold=None):
    '''
    img: numpy array, 1 - mask, 0 - background
    Returns run length as string formated
    '''
    if np.max(img) < min_max_threshold:
        return ''  ## no need to encode if it's all zeros
    if max_mean_threshold and np.mean(img) > max_mean_threshold:
        return ''  ## ignore overfilled mask
    pixels = img.T.flatten()
    pixels = np.concatenate([[0], pixels, [0]])
    runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
    runs[1::2] -= runs[::2]
    return ' '.join(str(x) for x in runs)
# 将图片从rle解码
def rle_decode(mask_rle, shape=(768, 768)):
    '''
    mask_rle: run-length as string formated (start length)
    shape: (height,width) of array to return
    Returns numpy array, 1 - mask, 0 - background
    '''
    s = mask_rle.split()
    starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
    starts -= 1
    ends = starts + lengths
    img = np.zeros(shape[0] * shape[1], dtype=np.uint8)
    for lo, hi in zip(starts, ends):
        # img[lo:hi] = 1
        img[lo:hi] = 255 #方便可视化
    return img.reshape(shape).T  # Needed to align to RLE direction
def masks_as_image(in_mask_list):
    # Take the individual ship masks and create a single mask array for all ships
    all_masks = np.zeros((768, 768), dtype=np.uint8)
    for mask in in_mask_list:
        if isinstance(mask, str):
            all_masks |= rle_decode(mask)
    return all_masks
# 将目标路径下的rle文件中所包含的所有rle编码,保存到save_img_dir中去
def rle_2_img(train_rle_dir, save_img_dir):
    masks = pd.read_csv(train_rle_dir)
    not_empty = pd.notna(masks.EncodedPixels)
    print(not_empty.sum(), 'masks in', masks[not_empty].ImageId.nunique(), 'images')
    print((~not_empty).sum(), 'empty images in', masks.ImageId.nunique(), 'total images')
    all_batchs = list(masks.groupby('ImageId'))
    train_images = []
    train_masks = []
    i = 0
    for img_id, mask in all_batchs[:10]:
        c_mask = masks_as_image(mask['EncodedPixels'].values)
        im = Image.fromarray(c_mask)
        im.save(save_img_dir + img_id.split('.')[0] + '.png')
        print(i, img_id.split('.')[0] + '.png')
        i += 1
    return train_images, train_masks
if __name__ == '__main__':
    rle_2_img('train_ship_segmentations_v2.csv',
              'mask/')

其中为了方便查看,原计划0为背景,1为mask,为了方便显示,设置为255为mask。


3.转换结果


image.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.png


目录
相关文章
|
6月前
|
数据处理 开发工具 git
coco2017数据集转换为yolo格式(记录过程)
最近做一个yolov5的落地应用项目,用的anylabeling打标,需要将coco2017的数据集转为yolo格式,故写下记录过程!
|
存储 算法 索引
RLE格式分割标注文件表示
RLE格式分割标注文件表示
997 0
|
25天前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
213 2
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
26天前
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
32 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
25天前
|
XML 计算机视觉 数据格式
数据集学习笔记(四):VOC转COCO数据集并据txt中图片的名字批量提取对应的图片并保存到另一个文件夹
这篇文章介绍了如何将VOC数据集转换为COCO数据集的格式,并通过Python脚本根据txt文件中列出的图片名称批量提取对应的图片并保存到另一个文件夹。
18 3
|
3月前
|
XML 数据格式 Python
将xml标签转换为txt(voc格式转换为yolo方便进行训练)
该文章提供了一个Python脚本,用于将VOC格式的XML标签文件转换为YOLO训练所需的TXT格式,包括修改数据集类别、输入图像与标注文件夹地址、转换过程和结果展示。
将xml标签转换为txt(voc格式转换为yolo方便进行训练)
|
3月前
|
Python
从bag包中提取图片和点云数据为pcd格式点云文件
从bag包中提取图片和点云数据为pcd格式点云文件
156 0
|
5月前
|
PyTorch 算法框架/工具 数据格式
将huggingface的大模型转换为safetensor格式
将huggingface的大模型转换为safetensor格式
181 1
|
6月前
要将ModelScope的应用检测模型转换为ONNX格式或RKNN格式
要将ModelScope的应用检测模型转换为ONNX格式或RKNN格式
358 1
|
机器学习/深度学习 人工智能 计算机视觉