数据集学习笔记(四):VOC转COCO数据集并据txt中图片的名字批量提取对应的图片并保存到另一个文件夹

简介: 这篇文章介绍了如何将VOC数据集转换为COCO数据集的格式,并通过Python脚本根据txt文件中列出的图片名称批量提取对应的图片并保存到另一个文件夹。

转换代码

import os
import random
import shutil
import sys
import json
import glob
import xml.etree.ElementTree as ET

"""
You only need to set the following three parts
1.val_files_num : num of validation samples from your all samples
2.test_files_num = num of test samples from your all samples
3.voc_annotations : path to your VOC dataset Annotations

"""
val_files_num = 500
test_files_num = 0
voc_annotations = 'E:/dataset/VOCdataset/VOCdevkit/VOC2007/Annotations/'  # remember to modify the path
main_path = 'E:/dataset/VOCdataset/VOCdevkit'
coco_name = 'VOC2007'
# split = voc_annotations.split('/')
# coco_name = split[-3]
# del split[-3]
# del split[-2]
# del split[-1]
# del split[0]
# # print(split)
# main_path = ''
# for i in split:
#     main_path += '/' + i
#
# main_path = main_path + '/'

coco_path = os.path.join(main_path, coco_name + '_COCO/')
coco_images = os.path.join(main_path, coco_name + '_COCO/images')
coco_json_annotations = os.path.join(main_path, coco_name + '_COCO/annotations/')
xml_val = os.path.join(main_path, 'xml', 'xml_val/')
xml_test = os.path.join(main_path, 'xml/', 'xml_test/')
xml_train = os.path.join(main_path, 'xml/', 'xml_train/')

voc_images = os.path.join(main_path, coco_name, 'JPEGImages/')

# from https://www.php.cn/python-tutorials-424348.html
def mkdir(path):
    path = path.strip()
    path = path.rstrip("\\")
    isExists = os.path.exists(path)
    if not isExists:
        os.makedirs(path)
        print(path + ' ----- folder created')
        return True
    else:
        print(path + ' ----- folder existed')
        return False

# foler to make, please enter full path

mkdir(coco_path)
mkdir(coco_images)
mkdir(coco_json_annotations)
mkdir(xml_val)
mkdir(xml_test)
mkdir(xml_train)

# voc images copy to coco images
for i in os.listdir(voc_images):
    img_path = os.path.join(voc_images + i)
    shutil.copy(img_path, coco_images)

    # voc images copy to coco images
for i in os.listdir(voc_annotations):
    img_path = os.path.join(voc_annotations + i)
    shutil.copy(img_path, xml_train)

print("\n\n %s files copied to %s" % (val_files_num, xml_val))

for i in range(val_files_num):
    if len(os.listdir(xml_train)) > 0:

        random_file = random.choice(os.listdir(xml_train))
        #         print("%d) %s"%(i+1,random_file))
        source_file = "%s/%s" % (xml_train, random_file)

        if random_file not in os.listdir(xml_val):
            shutil.move(source_file, xml_val)
        else:
            random_file = random.choice(os.listdir(xml_train))
            source_file = "%s/%s" % (xml_train, random_file)
            shutil.move(source_file, xml_val)
    else:
        print('The folders are empty, please make sure there are enough %d file to move' % (val_files_num))
        break

for i in range(test_files_num):
    if len(os.listdir(xml_train)) > 0:

        random_file = random.choice(os.listdir(xml_train))
        #         print("%d) %s"%(i+1,random_file))
        source_file = "%s/%s" % (xml_train, random_file)

        if random_file not in os.listdir(xml_test):
            shutil.move(source_file, xml_test)
        else:
            random_file = random.choice(os.listdir(xml_train))
            source_file = "%s/%s" % (xml_train, random_file)
            shutil.move(source_file, xml_test)
    else:
        print('The folders are empty, please make sure there are enough %d file to move' % (val_files_num))
        break

print("\n\n" + "*" * 27 + "[ Done ! Go check your file ]" + "*" * 28)

# !/usr/bin/python

# pip install lxml

START_BOUNDING_BOX_ID = 1
# PRE_DEFINE_CATEGORIES = None

# If necessary, pre-define category and its id
PRE_DEFINE_CATEGORIES = {"aeroplane": 1, "bicycle": 2, "bird": 3, "boat": 4,
 "bottle":5, "bus": 6, "car": 7, "cat": 8, "chair": 9,
 "cow": 10, "diningtable": 11, "dog": 12, "horse": 13,
 "motorbike": 14, "person": 15, "pottedplant": 16,
 "sheep": 17, "sofa": 18, "train": 19, "tvmonitor": 20}

"""
main code below are from
https://github.com/Tony607/voc2coco
"""

def get(root, name):
    vars = root.findall(name)
    return vars

def get_and_check(root, name, length):
    vars = root.findall(name)
    if len(vars) == 0:
        raise ValueError("Can not find %s in %s." % (name, root.tag))
    if length > 0 and len(vars) != length:
        raise ValueError(
            "The size of %s is supposed to be %d, but is %d."
            % (name, length, len(vars))
        )
    if length == 1:
        vars = vars[0]
    return vars

def get_filename_as_int(filename):
    try:
        filename = filename.replace("\\", "/")
        filename = os.path.splitext(os.path.basename(filename))[0]
        return int(filename)
    except:
        raise ValueError("Filename %s is supposed to be an integer." % (filename))

def get_categories(xml_files):
    """Generate category name to id mapping from a list of xml files.
    Arguments:
        xml_files {list} -- A list of xml file paths.
    Returns:
        dict -- category name to id mapping.
    """
    classes_names = []
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall("object"):
            classes_names.append(member[0].text)
    classes_names = list(set(classes_names))
    classes_names.sort()
    return {name: i for i, name in enumerate(classes_names)}

def convert(xml_files, json_file):
    json_dict = {"images": [], "type": "instances", "annotations": [], "categories": []}
    if PRE_DEFINE_CATEGORIES is not None:
        categories = PRE_DEFINE_CATEGORIES
    else:
        categories = get_categories(xml_files)
    bnd_id = START_BOUNDING_BOX_ID
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        path = get(root, "path")
        if len(path) == 1:
            filename = os.path.basename(path[0].text)
        elif len(path) == 0:
            filename = get_and_check(root, "filename", 1).text
        else:
            raise ValueError("%d paths found in %s" % (len(path), xml_file))
        ## The filename must be a number
        image_id = get_filename_as_int(filename)
        size = get_and_check(root, "size", 1)
        width = int(get_and_check(size, "width", 1).text)
        height = int(get_and_check(size, "height", 1).text)
        image = {
            "file_name": filename,
            "height": height,
            "width": width,
            "id": image_id,
        }
        json_dict["images"].append(image)
        ## Currently we do not support segmentation.
        #  segmented = get_and_check(root, 'segmented', 1).text
        #  assert segmented == '0'
        for obj in get(root, "object"):
            category = get_and_check(obj, "name", 1).text
            if category not in categories:
                new_id = len(categories)
                categories[category] = new_id
            category_id = categories[category]
            bndbox = get_and_check(obj, "bndbox", 1)
            xmin = int(get_and_check(bndbox, "xmin", 1).text) - 1
            ymin = int(get_and_check(bndbox, "ymin", 1).text) - 1
            xmax = int(get_and_check(bndbox, "xmax", 1).text)
            ymax = int(get_and_check(bndbox, "ymax", 1).text)
            assert xmax > xmin
            assert ymax > ymin
            o_width = abs(xmax - xmin)
            o_height = abs(ymax - ymin)
            ann = {
                "area": o_width * o_height,
                "iscrowd": 0,
                "image_id": image_id,
                "bbox": [xmin, ymin, o_width, o_height],
                "category_id": category_id,
                "id": bnd_id,
                "ignore": 0,
                "segmentation": [],
            }
            json_dict["annotations"].append(ann)
            bnd_id = bnd_id + 1

    for cate, cid in categories.items():
        cat = {"supercategory": "none", "id": cid, "name": cate}
        json_dict["categories"].append(cat)

    os.makedirs(os.path.dirname(json_file), exist_ok=True)
    print('json_file:::::::::',json_file)
    json_fp = open(json_file, "w")
    json_str = json.dumps(json_dict)
    json_fp.write(json_str)
    json_fp.close()

xml_val_files = glob.glob(os.path.join(xml_val, "*.xml"))
xml_test_files = glob.glob(os.path.join(xml_test, "*.xml"))
xml_train_files = glob.glob(os.path.join(xml_train, "*.xml"))

convert(xml_val_files, coco_json_annotations + 'val2017.json')
convert(xml_test_files, coco_json_annotations+'test2017.json')
convert(xml_train_files, coco_json_annotations + 'train2017.json')

根据名字将图片保存在另一个文件夹

先将xml写入一个txt文档

import os
xml_list = os.listdir(r'E:\dataset\VOCdataset\VOCdevkit\xml\xml_val')
with open('E:/dataset/VOCdataset/VOCdevkit/VOC2007/val_xml_list.txt','a') as f:
    for i in xml_list:
        if i[-3:]=='xml':
            # print(i[:-4])
            f.write(str(i[:-4])+'\n')

根据保存的文档选出所有的存在文档中名字的图片

# -*- coding: utf-8 -*-
import shutil

# 这个库复制文件比较省事
def objFileName(local_file_name_list):
    '''
    生成文件名列表
    :return:
    '''
    obj_name_list = []
    for i in open(local_file_name_list, 'r'):
        obj_name_list.append(i.replace('\n', ''))
    return obj_name_list

def copy_img(local_file_name_list,local_img_name,path):
    '''
    复制、重命名、粘贴文件
    :return:
    '''
    # 指定存放图片的目录
    for i in objFileName(local_file_name_list):
        new_obj_name = i + '.jpg'
        shutil.copy(local_img_name + '/' + new_obj_name, path + '/' + new_obj_name)

if __name__ == '__main__':
    #***************************************
    #local_file_name_list----># 指定名单(想要复制的所有文件名组成的txt)
    #local_img_name---->指定要复制的图片路径
    #path---->指定存放图片的目录
    #***************************************
    local_file_name_list = r'E:\dataset\VOCdataset\VOCdevkit\xml/train_xml_list.txt'
    local_img_name = r'E:\dataset\VOCdataset\VOCdevkit\VOC2007\JPEGImages'
    path = r'E:\dataset\VOCdataset\VOCdevkit\xml\xml_train_img'

    copy_img(local_file_name_list,local_img_name,path)
目录
相关文章
|
6月前
|
数据处理 开发工具 git
coco2017数据集转换为yolo格式(记录过程)
最近做一个yolov5的落地应用项目,用的anylabeling打标,需要将coco2017的数据集转为yolo格式,故写下记录过程!
|
1月前
|
数据采集 Python
Python实用记录(七):通过retinaface对CASIA-WebFace人脸数据集进行清洗,并把错误图路径放入txt文档
使用RetinaFace模型对CASIA-WebFace人脸数据集进行清洗,并将无法检测到人脸的图片路径记录到txt文档中。
40 1
|
1月前
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
63 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
3月前
|
XML 数据格式 Python
将xml标签转换为txt(voc格式转换为yolo方便进行训练)
该文章提供了一个Python脚本,用于将VOC格式的XML标签文件转换为YOLO训练所需的TXT格式,包括修改数据集类别、输入图像与标注文件夹地址、转换过程和结果展示。
将xml标签转换为txt(voc格式转换为yolo方便进行训练)
|
3月前
[PDF提取重命名]提取识别文字并对PDF文件批量重命名,提取PDF指定可复制的内容并批量重命名PDF,批量PDF文档指定识别提取区域
本文介绍一款实用工具,能快速从可复制内容的PDF中提取指定区域信息并据此重命名文件。设置提取坐标及导入PDF文档、设定新文件名后启动提取流程,即可高效批量处理。保存坐标设置以便重复使用,适用于需频繁修改大量PDF文件名的场景。
310 0
[PDF提取重命名]提取识别文字并对PDF文件批量重命名,提取PDF指定可复制的内容并批量重命名PDF,批量PDF文档指定识别提取区域
|
5月前
|
机器学习/深度学习 自然语言处理 算法
【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标
【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标
|
6月前
安装并使用labelImg标注数据集,yolo,VOC格式
安装并使用labelImg标注数据集,yolo,VOC格式
194 0
|
Linux Shell 数据格式
Linux脚本丨批量提取VCF文件指定样本数据
Linux脚本丨批量提取VCF文件指定样本数据
yolo自动标注时缺失的txt文件批量创建之脚本
使用yolov5做推理时并保存yolo格式的txt文件的时候,当图片上没有检测到目标时,yolov5将不会保存空的txt文件,导致txt文件缺失,yolo训练时报错。所以写了个简单的小脚本,在不影响原来已存在txt文件的前提下,来批量创建缺失的空txt文件并确保txt文件的总数量与图片的总数量一致。温馨提示:运行此脚本时,一定要注意图片和txt文件的文件名中,除了文件名后缀前有一个。
154 0
|
XML 数据可视化 数据格式
【数据集显示标注】VOC文件结构+数据集标注可视化+代码实现
【数据集显示标注】VOC文件结构+数据集标注可视化+代码实现
434 0