【CV大模型SAM(Segment-Anything)】如何一键分割图片中所有对象?并对不同分割对象进行保存?

简介: 【CV大模型SAM(Segment-Anything)】如何一键分割图片中所有对象?并对不同分割对象进行保存?

1. 一键分割图片中所有对象

import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
def show_anns(anns):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    ax = plt.gca()
    ax.set_autoscale_on(False)
    for ann in sorted_anns:
        m = ann['segmentation']
        img = np.ones((m.shape[0], m.shape[1], 3))
        color_mask = np.random.random((1, 3)).tolist()[0]
        for i in range(3):
            img[:,:,i] = color_mask[i]
        ax.imshow(np.dstack((img, m*0.35)))
image = cv2.imread('notebooks/images/dog.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(20,20))
plt.imshow(image)
plt.axis('off')
plt.show()
import sys
sys.path.append("..")
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
sam_checkpoint = "./models/sam_vit_b_01ec64.pth"
model_type = "vit_b"
device = "cpu"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(image)
plt.figure(figsize=(20,20))
plt.imshow(image)
show_anns(masks)
plt.axis('off')
plt.show()

原图:

一键分割后的结果:

2.一键分割的SamAutomaticMaskGenerato参数调整与说明

调整SamAutomaticMaskGenerator函数相关的参数,可以得到不同尺度的分割结果,代码示例如下:

mask_generator_2 = SamAutomaticMaskGenerator(
    model=sam,
    points_per_side=32,
    pred_iou_thresh=0.86,
    stability_score_thresh=0.92,
    crop_n_layers=1,
    crop_n_points_downscale_factor=2,
    min_mask_region_area=100,  # Requires open-cv to run post-processing
)
masks2 = mask_generator_2.generate(image)
plt.figure(figsize=(20,20))
plt.imshow(image)
show_anns(masks2)
plt.axis('off')
plt.show()

分割结果:

通过调整SamAutomaticMaskGenerator函数的相应参数后,可以发现:相比于默认参数,这个示例分割的结果更加细致了,例如:盆子里面的不同区域等都被独立分割出来了。

SamAutomaticMaskGenerator()参数详细说明:

  • model (Sam):用于掩膜预测的SAM模型。
  • points_per_side (int or None): 沿着图像一侧采样的点的数量。点的总数是point_per_side**2。如果没有,'point_grids’必须提供明确的点采样。
  • points_per_batch (int):设置模型同时运行的点的数量。更高的数字可能会更快,但会使用更多的GPU内存。
  • pred_iou_thresh (float): 滤波阈值,在[0,1]中,使用模型的预测掩膜质量。
  • stability_score_thresh (float):滤波阈值,在[0,1]中,使用掩码在用于二进制化模型的掩码预测的截止点变化下的稳定性。
  • stability_score_offset (float):计算稳定性分数时,对截止点的偏移量。 - box_nms_thresh (float):非最大抑制用于过滤重复掩码的箱体IoU截止点。
  • crop_n_layers (int):如果>0,蒙版预测将在图像的裁剪上再次运行。设置运行的层数,其中每层有2**i_layer的图像裁剪数。
  • crop_nms_thresh (float):非最大抑制用于过滤不同作物之间的重复掩码的箱体IoU截止值。
  • crop_overlap_ratio(float):设置作物重叠的程度。在第一个作物层中,作物将以图像长度的这个分数重叠。在第一个裁剪层中,裁剪物将以图像长度的这一比例重叠,以后的裁剪层中,更多的裁剪物将缩小这一重叠。
  • crop_n_points_downscale_factor (int):在图层n中每面采样的点数被crop_n_points_downscale_factor**n缩减。
  • point_grids (list(np.ndarray) or None):用于取样的明确网格的列表,归一化为[0,1]。列表中的第n个网格被用于第n个作物层。与points_per_side排他。
  • min_mask_region_area (int):如果>0,后处理将被应用于移除面积小于min_mask_region_area的遮罩中的不连接区域和孔。需要opencv。
  • output_mode (str):掩模的返回形式。可以是’binary_mask’, ‘uncompressed_rle’, 或者’coco_rle’。coco_rle’需要pycocotools。对于大的分辨率,'binary_mask’可能会消耗大量的内存。

SamAutomaticMaskGenerator()函数的参数默认值:

model: Sam,
points_per_side: Optional[int] = 32,
points_per_batch: int = 64,
pred_iou_thresh: float = 0.88,
stability_score_thresh: float = 0.95,
stability_score_offset: float = 1.0,
box_nms_thresh: float = 0.7,
crop_n_layers: int = 0,
crop_nms_thresh: float = 0.7,
crop_overlap_ratio: float = 512 / 1500,
crop_n_points_downscale_factor: int = 1,
point_grids: Optional[List[np.ndarray]] = None,
min_mask_region_area: int = 0,
output_mode: str = “binary_mask”,

3. 保存所有分割后的目标对象

for i, mask in enumerate(masks):
    mask = ~mask['segmentation']
    mask = mask + 255
    mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
    mask = mask.astype(np.uint8)
    res = cv2.bitwise_and(image, mask)
    res[res == 0] = 255
    plt.imshow(res)
    plt.savefig('res-{}.png'.format(i + 1))
    plt.show()

下图只展示了4个分割结果:


相关文章
|
人工智能 搜索推荐 算法
爱思唯尔的KBS——模板、投稿、返修、接收的总结
爱思唯尔的KBS——模板、投稿、返修、接收的总结
3766 3
|
机器学习/深度学习 存储 监控
yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)
yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)
|
计算机视觉
【CV大模型SAM(Segment-Anything)】如何保存分割后的对象mask?并提取mask对应的图片区域?
【CV大模型SAM(Segment-Anything)】如何保存分割后的对象mask?并提取mask对应的图片区域?
【CV大模型SAM(Segment-Anything)】如何保存分割后的对象mask?并提取mask对应的图片区域?
|
机器学习/深度学习 存储 编解码
Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建
Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建
13733 1
Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
20114 2
|
机器学习/深度学习 自然语言处理 算法
【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标
【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
|
编解码 数据可视化 定位技术
60行代码就可以训练/微调 Segment Anything 2 (SAM 2)
本文演示了如何在仅60行代码内(不包括标注和导入)对SAM2进行微调。
858 1
60行代码就可以训练/微调 Segment Anything 2 (SAM 2)
|
人工智能 TensorFlow 算法框架/工具
AI计算机视觉笔记十七:实例分割
本文介绍了计算机视觉中的实例分割技术,通过结合目标检测和语义分割的方法,实现对图像中不同实例的精确区分与标记。以识别多只猫为例,详细描述了使用Mask R-CNN模型进行实例分割的过程,并提供了相关代码及环境搭建指南。通过实例演示,展示了如何利用该技术成功识别并分割出图像中的各个对象。
|
Kubernetes Shell 测试技术
在Docker中,可以在一个容器中同时运行多个应用进程吗?
在Docker中,可以在一个容器中同时运行多个应用进程吗?