m认知无线电信号检测算法matlab仿真,能量检测,循环平稳检测以及自相关检测

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: m认知无线电信号检测算法matlab仿真,能量检测,循环平稳检测以及自相关检测

1.算法概述

  频谱感测是认知无线电的一项关键技术。我们将频谱感知作为一个分类问题,提出一种基于深度学习分类的感知方法。我们归一化接收信号功率以克服噪声功率不确定性的影响。我们使用尽可能多的信号以及噪声数据来训练模型,以使训练后的网络模型能够适应未训练的新信号。我们还使用迁移学习策略来提高实际信号的性能。进行了广泛的实验以评估该方法的性能。

1.1能量检测

   能量检测法是一种非相干的检测手段,与频谱分析非常相似,也是通过判决来实现的。该方法依据感知器在信号有无两种假设情况下按接收信号功率大小的不同对信号进行检测。这种方法是一种对未知参数的确定性信号及其存在性检测的有效方法。由于能量检测对信号类型不作限制,因此不需要授权信号的先验信息。能量检测的主要思想是:将授权信号S(t)的功率在一个时间段(N个采样点)内取平均:

1.png

接着与预设门限进行比较,判定该频段是否存在授权信号。

1.2循环平稳检测

     现有算法基本都是利用时域法实现信号的循环谱检测[6]。因为对时域直接进行运算方法简单,所乘的旋转因子利用欧拉公式将实数域与复数域所得的结果分别存储即可。但是正弦和余弦函数的数值计算通常利用泰勒公式进行近似,因此计算的周期较长,系统比较复杂且实时性不高。为了提高信号检测的实时性,本文考虑频域计算的方法,利用离散傅里叶变换中时域乘以一个旋转因子就相当于在频域进行循环位移的性质,只需要将经过离散傅里叶变换后的序列进行循环位移,单用移位寄存器即可实现,相对于计算正弦和余弦函数简单得多。

1.3自相关检测

   依据自相关的定义,自相关的检验就是寻找能够判断随机误差项与其自身一阶或多阶滞后项是否相关的方法。这里仍然采用OLS估计模型所得到的残差e t e_{t}et作为随机干扰项的近似估计量,通过分析OLS所得到的残差与其自身滞后项的相关性来判断随机干扰项是否存在自相关性。

   能量检测方法,即将接收到的模拟信号变为数字信号后,通过FFT变换,然后再进行,在现有的通信系统中,通常为ASK、PSK、FSK、QAM等,它们都由数字基带脉冲对周期性载波的参数进行调制。采样频率fs =100Hz,,载频fc=30Hz,码率f0= fs/20。

2.仿真效果预览
matlab2022a仿真

2.png
3.png
4.png

3.MATLAB部分代码预览

sel = 1;%1:高斯信道;0:莱斯信道
SNR = 10;%信噪比
%生成bpsk调制信号
fs=100;
%采样频率
fc=30;
%载频
fo=fs/20;
%码率
L=4000;
%信号样本
t = (0:L-1)*1/fs;
xn=cos(8*pi*fc*t);%产生最为简单的BPSK信号      
if sel == 1
y = awgn(xn,SNR);%高斯信道
else
c  = [1,0.5,0.1];
y = filter(c,xn);  
end
% chan = rayleighchan(Ts,fd,tau,pdb)
% Ts  :采样时间,如果考虑基带信号,这个和接收机要处理的数据速率是一样的,要考虑过采样的影响
% fd  :就是Doppler频偏,以Hz为单位,与速率的换算关系为v×fc/c,fc是载频
figure(1)
subplot(121);plot(t,y);title('产生的BPSK信号');
%进行能量检测
NFFT = 2^nextpow2(L);
Y = fft(y,NFFT)/L;%第一步,进行FFT变换
f = fs/2*linspace(0,1,NFFT/2);
subplot(122);plot(f,2*abs(Y(1:NFFT/2)),'r-*');title('能量检测效果');
01-35m
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
6天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
138 85
|
5天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
5天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
4天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
3天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
120 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度