线性回归中的L1与L2正则化

简介: 线性回归中的L1与L2正则化

在这篇文章中,我将介绍一个与回归相关的常见技术面试问题,我自己也经常会提到这个问题:

描述回归建模中的L1和L2正则化方法。

在处理复杂数据时,我们往往会创建复杂的模型。太复杂并不总是好的。过于复杂的模型就是我们所说的“过拟合”,它们在训练数据上表现很好,但在看不见的测试数据上却表现不佳。

有一种方法可以对损失函数的过拟合进行调整,那就是惩罚。通过惩罚或“正则化”损失函数中的大系数,我们使一些(或所有)系数变小,从而使模型对数据中的噪声不敏感。

在回归中使用的两种流行的正则化形式是L1又名Lasso回归,和L2又名Ridge回归。在线性回归中我们使用普通最小二乘(OLS)是用于拟合数据的:我们对残差(实际值与预测值之间的差异)进行平方,以得到均方误差(MSE)。最小的平方误差,或最小的平方,是最适合的模型。

640.png


让我们来看看简单线性回归的成本函数:

640.png

对于多元线性回归,成本函数应该是这样的,其中𝑘是预测因子或变量的数量。

640.png

因此,随着预测器(𝑘)数量的增加,模型的复杂性也会增加。为了缓解这种情况,我们在这个成本函数中添加了一些惩罚形式。这将降低模型的复杂性,有助于防止过拟合,可能消除变量,甚至减少数据中的多重共线性。

L2 -岭回归

L2或岭回归,将𝜆惩罚项添加到系数大小的平方𝑚。𝜆是一个超参数,这意味着它的值是自由定义的。你可以在成本函数的末端看到它。

640.png

加上𝜆惩罚,𝑚系数受到约束,惩罚系数大的代价函数。

L1 -Lasso回归

L1或Lasso回归,几乎是一样的东西,除了一个重要的细节-系数的大小不是平方,它只是绝对值。

640.png

在这里,成本函数的最后是𝑚的绝对值,一些系数可以被精确地设置为零,而其他的系数则直接降低到零。当一些系数变为零时,Lasso回归的效果是特别有用的,因为它可以估算成本并同时选择系数。。

还有最重要的一点,在进行任何一种类型的正则化之前,都应该将数据标准化到相同的规模,否则罚款将不公平地对待某些系数。


目录
相关文章
|
4月前
|
机器学习/深度学习 Python
L1和L2正则化
L1和L2正则化
|
5月前
|
机器学习/深度学习
|
5月前
|
机器学习/深度学习 数据挖掘 C#
用C#实现简单的线性回归
用C#实现简单的线性回归
63 1
|
6月前
|
机器学习/深度学习
逻辑回归
【7月更文挑战第22天】逻辑回归
48 5
|
6月前
什么是线性回归
【7月更文挑战第21天】什么是线性回归。
86 2
|
7月前
|
机器学习/深度学习 存储 自然语言处理
逻辑回归的介绍和应用
**逻辑回归简介** 逻辑回归是一种分类模型,尽管名字含“回归”,实际上是用于二分类问题的。它简单易懂,计算高效,适用于许多领域,如医学、社会科学、市场营销等。优点是模型简单,易于实现,具有强解释性。然而,它易受多重共线性影响,可能欠拟合,分类精度有限,尤其对非线性问题和数据不平衡问题处理不佳。在实践中,逻辑回归常作为其他复杂算法的基线,如用于信用卡欺诈检测和点击率预测。通过调整和与其他技术结合,如GBDT,可以提升其性能。
|
机器学习/深度学习 API 算法框架/工具
二、逻辑回归
二、逻辑回归
|
机器学习/深度学习 自然语言处理
正则化
机器学习中的正则化(regularization)是一种常用的方法,用于防止模型过拟合(overfitting)。过拟合是指模型在训练集上表现很好,但在测试集或新数据上表现较差的情况。正则化通过在模型的目标函数中加入一个惩罚项(penalty term),来对模型的复杂度进行限制,从而避免模型在训练集上过于拟合。
86 0
|
机器学习/深度学习 人工智能 算法
|
机器学习/深度学习 算法
逻辑回归和线性回归有何不同?
逻辑回归和线性回归有何不同?