【Python】向量叉积和凸包 | 引射线法 | 判断点是否在多边形内部 | 葛立恒扫描法 | Cross Product and Convex Hul

简介: 这个系列似乎反响不错, 所以我继续水下去 (bushi)。本篇博客是关于经典的 Cross Product and Convex Hull (向量叉积和凸包)的,我们将介绍引射线法,葛立恒扫描法。在讲解之前我会对前置知识做一个简单的介绍,比如向量叉积,如何确定直线是在顺时针上还是逆时针上等。算法讲解部分是为后面练习题做准备的,比如如何判断内点是否在多边形内,如何计算多边形面积等,还将简单介绍一下葛立恒扫描法,在提供的练习题中就能碰到.

 5dfa116d3b28183cfd9ad0e8b45b9f9c_8a89ca27682d44518452b4069a0a3d4e.png

💭 写在前面


这个系列似乎反响不错, 所以我继续水下去 (bushi)。本篇博客是关于经典的 Cross Product and Convex Hull (向量叉积和凸包)的,我们将介绍引射线法,葛立恒扫描法。在讲解之前我会对前置知识做一个简单的介绍,比如向量叉积,如何确定直线是在顺时针上还是逆时针上等。算法讲解部分是为后面练习题做准备的,比如如何判断内点是否在多边形内,如何计算多边形面积等,还将简单介绍一下葛立恒扫描法,在提供的练习题中就能碰到。练习代码量200行左右,如果感兴趣想尝试做的话,需要有一定的耐心。练习题的环境为 Google Colaboratory(K80 GPU)Jupyter Notebook:colab


Ⅰ. 前置知识


0x00 向量叉积(Cross product)

📚 概念:向量积 (Cross product),也可以称之为 "向量叉积" 。我更愿意称之为 "向量叉积",因为可以顾名思义 —— 叉积,交叉乘积!


" 叉积,叉积……积……?!   积你太美!"


咳咳…… 它是一种在向量空间中向量的二元运算。


向量叉积不同于点积!其运算结果是一个向量,而非标量。


并且两个向量的叉积与这两个向量垂直。表示方法为  ,期中  代表向量。


💭 定义如下:

4625e5dc99ddfb11a4b6b0a3ac2d5955_2326be2161754c0cb171d08babec0a19.png


模长:这里的  表示两向量之间的夹角(共起点的前提下),范围  ,它位于这两个矢量所定义的平面上。

方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。

的长度在数值上等于以 ,夹角为  组成的平行四边形面积。

因为在不同的坐标系中  可能不同,所以运算结果  是一个伪向量。

两向量的三角形的面积:

817b29b94e4d3babe0f175d5fae2fa8b_3411eb22a0ea4f14945bb6d404edff84.png

令向量  和  都在平面  上:

f1b00e6a9f66d8748a024b1bbd3f7241_ebb9fff5ccd24f618888b6ebeee6f941.png


0x01 确定顺时针逆时针(Clockwise or Counter-clockwise)

e63f36a35f6829d1e7af2962ca07346a_ce17b9b25a96497ca199d979eefdec41.png


❓ 有什么好办法,可以确定点在直线  是在顺时针上还是逆时针上?


我们可以用 叉积  "暗中观察" 点是否在直线  的顺时针或逆时针方向上:


  • ∵    的叉积指向显示的前方,∴   点在逆时针方向。
  • ∵    的叉积指向显示的后方,∴   点在顺时针方向。

0x02 交叉点(Intersection)

当每条线的端点位于另一条线的不同侧面时,两条线就会交叉:

42f563bb5bb69510ab57d1c4e1aca000_da6bc7ed1c7f4238bab3ac34ee2b5f93.png



Ⅱ. 算法讲解部分


0x00 判断内点是否在多边形内(Inner points)

❓ 思考:如何检查平面上的一个点(point)是否在多边形内部?

0b2de8c76ba4c33f0a3915bd39b168c2_fb087773b6184c44814a1f9552b37a0c.png



这里我介绍两种常用的方法,只在一侧法 和 引射线法。


① "只在一侧" 法:


只在一侧 (only on the one side) ,当一个点在每个多边形边的一侧(顺时针或逆时针)时,该点就在多边形的内部。

037e44fa65ac73d0e16145e7de9a47b1_7c594299e11744baac59b2b81d0e036d.png


② 引射线法:


从目标点出发引一条射线,观察这条射线和多边形所有边的交点数目。如果有奇数个交点,则说明在内部,如果有偶数个交点,则说明在外部。

bdbc88d46d1ceeec8981bbc729f9822d_2c3b39217708487c8ebaeaefb68a1655.png


图中的红点是需要测试的点(我已标出),我们要确定它是否位于多边形内。


💡 解决方案:将多边形的每一边与测试点的  (垂直)坐标进行比较,并编译一个结点列表,其中每个节点是一个边与测试点的  阈值相交的点。在此示例中的多边形的 8 条边越过  阈值,而其他 6 条边则没有。那么,如果有奇数测试点每边的节点数,那就说明它在多边形内。如果测试点的每一侧都有偶数个节点,那么它在多边形之外。


在本示例中,测试点左侧有5个节点,右侧有3个节点。由于 5 和 3 是奇数,该测试点在多边形内。(注意:该算法不关心多边形是顺时针还是逆时针跟踪)


0x01 计算多边形的面积

💡 思路:


按逆时针方向对顶点进行排序。

找到  个顶点位于第  个节点和第  个节点的边缘的顺时针方向的三角形,并积累三角形的面积。

删除三角形并再次重复该过程,直到没有顶点为止。

8c9ac61e13e0aad66bf68ec1c112b6c2_f18704a5d0ea47c383c4d685f09b73e1.png


将所有边缘的叉积加起来,然后除以2。

9d217d54a9ddd19b15e603b77aa2cc11_d73d89f84ca74a22b996641b55c97e67.png

sum += float(x1 * y2 - x2 * y1);

根据一条边的方向,添加或减去三角形的面积。


令人惊讶的是,只留下了多边形的面积:

cf22336ae7c6c36cdf2e5b612082ac1a_39d57097ec23461d851fd008d10a8436.png


🔑 提示:其类似于边的叉积之和

f62b9515f91cc36a30a488497385adeb_1140f2a2b1e143a7ac2d9992adcb8062.png


0x02 葛立恒扫描法(Graham Scan)

凸包计算(Computing a convex hull),给定平面点:

d6f87b722d3b81dd63d2f208127da0b6_fbbb9a56f6b44a069686a15642029b12.png


葛立恒扫描法(Graham Scan)


葛立恒扫描法(Graham's scan)是一种计算一组的平面点的凸包的算法。以在1972年发表该算法的葛立恒命名。

ada3a1db8cbcbd4dc4d39d8f63ea4f93_aab397ef670847a3ae16bd92d32b8e61.png

5dfbf5d7a8ec8d96ac488e14e13430b0_1e942d6bd15a43e6be25b85d00113609.png


先找到左下角的点  (一定在凸包上)。

以  为原点,将其他的点按照极坐标排序,角度小的排在前,若角度相同,距离近的排在前。

入栈,从  (第三个点)开始,若   在直线   的左边 ,则 入栈,否则  出栈,一直遍历完后面所有点 (这里就需要向量叉乘来判断点在线的左边还是右边)。

最后留在栈中的点就是凸包上的点。

Ⅲ. 练习(Assignment)


🔺 注意:需用 Python 实现,算法必须在不导入外部库的情况下实现,但允许使用 numpy、math、sort 相关函数。(如果不加以限制,直接导某包掉函数就能直接算凸包,那还练个锤子,知道的小伙伴可以在评论区扣出来)


环境推荐:Colab


任务1:计算多边形面积

给定由  个点构成的平面多边形 ,计算该多边形的面积。

input

Output

5

0 0

2 0

2 2

1 1

0 2

3

任务2:多边形坐标

给定的  个构成多边形的点和  个检查点,判断每个检查点是否在多边形内。


* 注:在边缘线上的点也视作在多边形内。

input

Output

5         // N points

0 0      // (x1, y1)

2 0      // (x2, y2)

2 2

1 1

0 2

2

0 0

0.5 0.5

-1 -1

Inside

Inside

Outside


读取 input1.txt , input2, input3.txt,将结果分别生成到 output1.txt , _output3.txt 。


这里的 txt 文件请复制粘贴下面的数据,请自行创建!


💬 input1.txt

80 27
24 87
66 71
38 31
73 83
8 49
79 89

💬 input2.txt

61 80
14 10
68 11
24 21
20 31
95 90
1 60
14 54
79 47
20 14
59 22
91 13
18 98
51 92
23 30
59 53
82 84
65 28
79 34
1 21
67 82
29 6
13 5
33 58
81 59
0 67
49 47
74 35
5 79
4 76
50 36
85 0
87 66
33 78
78 64
85 11
13 17
61 47
17 92
1 99
30 95
100 18
64 93
68 71
46 76
59 61
31 56
27 52
37 48
85 97
38 88
25 80
19 38
26 6
52 86
25 30
68 43
52 12
97 79
34 63

💬 input3.txt

46 44
15 54
59 6
85 50
59 98
77 92
32 88
99 12
34 37
0 83
88 61
83 69
37 1
24 90
21 100
28 95
67 44
18 33
79 59
80 88
94 94
22 30
89 30
9 83
68 77
45 95
56 100
28 5
31 52
14 49
80 81
95 57
96 28
80 27
87 29
42 52
0 91
9 72
65 78
8 26
40 25
6 30
68 19
54 58
55 53
13 46
30 14
32 45
50 68
85 23
44 100
12 99
14 6
45 93
9 49
55 2
44 93
29 35
9 2
90 85
38 45
33 13
67 89
59 51
6 94
15 48
75 72
7 58
51 49
59 51


输出文件命名为 output1, output2, output3,输出结果演示:

5cc9f5caba3fbc5a69b3414a5a2a15f3_94cf290dcf794a9bb001aba69eca7bd4.png


生成 output 文件后,每个 output 都要画出图像,这里就不需要大家自己画了,


提供了 display.py,这是用于生成图像的代码。

def display(input_txt_path, output_txt_path):
    import matplotlib.pyplot as plt
    '''
    input1:input_txt_path=input_example.txt的路径
    input2:output_txt_path=output_example.txt的路径
    return:保存conex_hull图像
    '''
    with open(input_txt_path, "r") as f:
        input_lines = f.readlines()
    with open(output_txt_path, "r") as f:
        output_lines = f.readlines()
    whole_points = input_lines
    area = round(float(output_lines[0]), 1)
    hull_points = output_lines[1:]
    x_list = [int(x.split(" ")[0]) for x in whole_points]
    y_list = [int(x.split(" ")[1]) for x in whole_points]
    plt.plot(x_list, y_list, marker='.', linestyle='None')
    hx_list = [int(x.split(" ")[0]) for x in hull_points]
    hy_list = [int(x.split(" ")[1]) for x in hull_points]
    plt.plot(hx_list, hy_list, marker='*', linestyle='None', markersize=10)
    title = plt.title(f'Area : {area}')
    plt.setp(title, color='r')
    plt.savefig(output_txt_path[:-3]+"png", bbox_inches='tight')
if __name__ == "__main__":
    input_txt_path = "./input_example.txt"
    output_txt_path = "./output_example.txt"
    display(input_txt_path, output_txt_path)


通过调用提供的 display 函数,生成的图像效果如下:

724a47e0543259cd1631c15b9090537a_59b9fbb2f7aa4d69b1020af2993eaa85.png


任务3:点是否在多边形内

给定  个点构成平面多边形,计算凸包及其面积。

input

Output

5         // N 个点

0 0      // (x1, y1)

2 0      // (x2, y2)

2 2

1 1

0 2

4

(0, 0), (2, 0), (2, 2), and (0, 2) are points of convex hull.


您可以从 point_in_polygon_input.txt 输入 5 个坐标,并将它们与在刚才实现的 "练习1"  中保存的output1, output2, output3.txt 的多边形进行比较,以 "in" 或 "out" 的形式输入5个坐标。


这里的 point_in_polygon_input.txt 仍然是要自己创建,复制粘贴手动创建:


point_in_ploygon_input.txt:

0 0
1 1
10 10
50 50
70 70

因此,与3个 output1-3.txt 的文件相比,必须生成 3 个output 文件,格式演示如下:

7ee55a9474b86a44b3b95fc5682ff786_f30188db28394f83ba2f788f64c5497e.png


参考代码

# -*- coding: utf-8 -*-
import math
def read_points(p):
    L = []  
    with open(p, 'r') as FILE:
        line = FILE.readlines()
    Lx, Ly = [int(i.split(" ")[0]) for i in line], [int(i.split(" ")[1]) for i in line]
    cur, sz = 0, len(Lx)
    for cur in range(sz):
        x, y = Lx[cur], Ly[cur]
        L.append(
            (x, y)
        )
    return L
def get_rad(px, py):
    pi = math.pi
    a = px[0] - py[0]
    b = px[1] - py[1]
    if a == 0:
        if b:
            return pi / 2
        else:
            return -1
    rad = math.atan(float(b) / float(a))
    if rad < 0:
        return rad + pi
    else:
        return rad
def sort_points_tan(p, pk):
    L = []
    resL = []
    i = 0
    sz = len(p)
    for i in range(sz):
        L.append({"index": i, "rad": get_rad(p[i], pk)})
    L.sort(key=lambda k: (k.get('rad')))
    sz = len(L)
    for i in range(sz):
        resL.append(p[L[i]["index"]])
    return resL
def calc_area(points):
    sz = len(points)
    points.append(points[0])
    S = 0
    for i in range(sz):
        S += (points[i][0] + points[i + 1][0]) * (points[i + 1][1] - points[i][1])
    return abs(S) / 2
def convex_hull(p):
    p = list(set(p))
    k = 0
    sz = len(p)
    for i in range(1, sz):
        if p[i][1] < p[k][1]:
            k = i
        if (p[i][0] < p[k][0]) and (p[i][1] == p[k][1]):
            k = i
    pk = p[k]
    p.remove(p[k])
    p_sort = sort_points_tan(p, pk)
    L = [pk, p_sort[0]]
    sz = len(p_sort)
    for i in range(1, sz):
        while (( (L[-2][0] - L[-1][0]) * (p_sort[i][1] - L[-1][1]) - (p_sort[i][0] - L[-1][0]) * (L[-2][1] - L[-1][1]) ) > 0):
            L.pop()
        L.append(p_sort[i])
    return L
def check(sp, ep, p):
    if sp[0] < p[0] and ep[1] > p[1]: 
        return False
    if sp[1] == p[1] and ep[1] > p[1]: 
        return False
    if ep[1] == p[1] and sp[1] > p[1]: 
        return False
    if sp[1] == ep[1]: 
        return False
    if sp[1] > p[1] and ep[1] > p[1]: 
        return False
    if sp[1] < p[1] and ep[1] < p[1]: 
        return False
    if ep[0] - (ep[0] - sp[0]) * (ep[1] - p[1]) / (ep[1] - sp[1]) < p[0]: 
        return False
    return True
def inpoly(p, poly_points):
    cnt = 0
    i = 0
    sz = len(poly_points)
    for i in range(sz):
        p1, p2 = poly_points[i], poly_points[(i + 1) % sz]
        if check(p1, p2, p):
            cnt += 1
    if cnt % 2 == 1:
        return True
    else:
        return False
def write_in_out(test_points, poly_points, out_txt_path):
    with open(out_txt_path, "w") as FILE:
        i = 0
        for i in test_points:
            if inpoly(i, poly_points):
                FILE.write("in")
            else:
                FILE.write("out")
            FILE.write("\n")
def write_area(poly_points,out_path):
    res = convex_hull(poly_points)
    with open(out_path,"w") as FILE:
        FILE.write(str(calc_area(res)))
        FILE.write('\n')
        sz = len(res)
        for i in range(sz - 1) :
            FILE.write(str( res[i][0]))
            FILE.write(" ")
            FILE.write(str(res[i][1]))
            FILE.write("\n")
    return res
test_points = read_points("point_in_polygon_input.txt")
poly_out_path = "foxny_point_in_polygon_output1.txt" #####
poly_points = read_points("input1.txt")  ####
area = write_area(poly_points, "foxny_output1.txt")  ######
write_in_out(test_points , area, poly_out_path)
def display(input_txt_path, output_txt_path):
    import matplotlib.pyplot as plt
    '''
    input1 : input_txt_path = path of input_example.txt
    input2 : output_txt_path = path of output_example.txt
    return : save convex_hull image
    '''
    with open(input_txt_path, "r") as f:
        input_lines = f.readlines()
    with open(output_txt_path, "r") as f:
        output_lines = f.readlines()
    whole_points = input_lines
    area = round(float(output_lines[0]), 1)
    hull_points = output_lines[1:]
    x_list = [int(x.split(" ")[0]) for x in whole_points]
    y_list = [int(x.split(" ")[1]) for x in whole_points]
    plt.plot(x_list, y_list, marker='.', linestyle='None')
    hx_list = [int(x.split(" ")[0]) for x in hull_points]
    hy_list = [int(x.split(" ")[1]) for x in hull_points]
    plt.plot(hx_list, hy_list, marker='*', linestyle='None', markersize=10)
    title = plt.title(f'Area : {area}')
    plt.setp(title, color='r')
    plt.savefig(output_txt_path[:-3]+"png", bbox_inches='tight')
####################################################################################1
if __name__ == "__main__":
    input_txt_path = "input1.txt"
    output_txt_path = "foxny_output1.txt"
    display(input_txt_path, output_txt_path)
""


🚩 结果演示:


foxny_output1.png

10ca8361651d73e8ad469f38c578cd9f_86f81e778d404fc78bd76a8f84a605eb.png

foxny_ouput2.txt


3568.0
80 27
79 89
24 87
8 49
38 31

foxny_output2.png

76e184c4c65cb8a161001f59390d3581_3c348ebd6b7b40f590c54340f0249687.png

foxny_output2.txt

9049.5
85 0
100 18
97 79
95 90
85 97
1 99
0 67
1 21
13 5

foxny_output3.png

2dce26fc79e207b7a8a23c8144230344_1c28027362874d2b85f25c4b6efcddae.png

foxny_output3.txt

8727.0
37 1
55 2
99 12
94 94
56 100
21 100
12 99
0 91
0 83
9 2

foxny_point_in_polygon_output1.txt

out
out
out
in
in

foxny_point_in_polygon_output2.txt

out
out
in
in
in

foxny_point_in_polygon_output3.txt

out
out
in
in
in


相关文章
|
7月前
|
Python
Python代码扫描目录下的文件并获取路径
【5月更文挑战第12天】Python代码扫描目录下的文件并获取路径
144 1
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
443 0
|
2月前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
26 3
|
2月前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
22 3
|
2月前
|
网络安全 Python
Python编程--目标IP地址段主机指定端口状态扫描
Python编程--目标IP地址段主机指定端口状态扫描
63 1
|
3月前
|
Linux Python
用python扫描linux开放的端口(3种方式)
这篇文章介绍了三种使用Python实现Linux端口扫描的方法,包括基础版端口扫描、全端口扫描和多线程扫描技术。
74 15
|
3月前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
31 1
|
2月前
|
安全 网络协议 IDE
使用Python编写网络扫描程序
使用Python编写网络扫描程序
54 0
|
5月前
|
网络协议 安全 Shell
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。