《阿里云 Kubernetes+Kubeflow – 加速深度学习实验的利器》电子版地址

简介: 阿里云 Kubernetes+Kubeflow – 加速深度学习实验的利器

《阿里云 Kubernetes+Kubeflow – 加速深度学习实验的利器》阿里云 Kubernetes+Kubeflow – 加速深度学习实验的利器

电子书:

屏幕快照 2022-06-17 上午9.58.35.png

                
            </div>
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
Kubernetes Docker Windows
『阿里云加速』Docker DeskTop安装kubernetes时一直停留在Starting处理方案
📣读完这篇文章里你能收获到 - Docker DeskTop 安装K8S失败处理方案 - Docker 配置镜像加速器 - 数字签名的限制解除
1495 0
『阿里云加速』Docker DeskTop安装kubernetes时一直停留在Starting处理方案
|
机器学习/深度学习 Web App开发 人工智能
Colaboratory:手把手教你使用Google免费的云端IDE进行深度学习(免费的GPU加速)的详细攻略
Colaboratory:手把手教你使用Google免费的云端IDE进行深度学习(免费的GPU加速)的详细攻略
Colaboratory:手把手教你使用Google免费的云端IDE进行深度学习(免费的GPU加速)的详细攻略
|
存储 缓存 Dragonfly
如何进行容器镜像加速?| 深度揭秘阿里云 Serverless Kubernetes(3)
容器相比虚拟机最突出的特点之一便是轻量化和快速启动。相比虚拟机动辄十几个 G 的镜像,容器镜像只包含应用以及应用所需的依赖库,所以可以做到几百 M 甚至更少。但即便如此,几十秒的镜像拉取还是在所难免,如果镜像更大,则耗费时间更长。
1331 0
如何进行容器镜像加速?| 深度揭秘阿里云 Serverless Kubernetes(3)
|
机器学习/深度学习 人工智能 数据处理
预约直播 | 基于深度学习的稀疏模型训练 GPU 加速
阿里云AI技术分享会第六期《基于深度学习的稀疏模型训练 GPU 加速》将在2022年10月19日晚18:00开启直播,精彩不容错过!
预约直播 | 基于深度学习的稀疏模型训练 GPU 加速
|
机器学习/深度学习 自然语言处理 并行计算
最全攻略:利用LightSeq加速你的深度学习模型
利用LightSeq加速你的深度学习模型
937 0
|
机器学习/深度学习 人工智能 数据可视化
100倍加速!深度学习训练神器Determined AI宣布开源!更快,更简单,更强大
还在抱怨模型训练过于耗时?还在手动苦苦调整超参?现在,这款神器来帮你!24倍分布式训练加速,100倍智能超参优化,Determind AI宣布开源,你的模型有救了!
1153 0
100倍加速!深度学习训练神器Determined AI宣布开源!更快,更简单,更强大
|
机器学习/深度学习 传感器 自然语言处理
Nat. Commun. | 序列到功能的深度学习框架加速工程核糖调节剂设计和优化
Nat. Commun. | 序列到功能的深度学习框架加速工程核糖调节剂设计和优化
182 0
Nat. Commun. | 序列到功能的深度学习框架加速工程核糖调节剂设计和优化
|
机器学习/深度学习 人工智能 Linux
Intel 技术专家直播:x86平台上,AI能力的演进及深度学习加速的关键技术
今天晚8点,扫码图中进入 InfoQ直播间,等你一起来探讨在英特尔各代 x86 平台上,AI 能力是如何进行演进的?
Intel 技术专家直播:x86平台上,AI能力的演进及深度学习加速的关键技术
|
机器学习/深度学习 人工智能 分布式计算
实时深度学习的推理加速和连续学习
在本技术分析报告的第一部分《研学社·系统组 | 实时深度学习的推理加速和持续训练》,我们介绍了最近一些用于 DNN 推理加速的硬件和算法技术。在这第二部分,我们将基于最近一篇论文《在连续学习场景中对深度神经网络进行微调(Fine-Tuning Deep Neural Networksin Continuous Learning Scenarios)》探讨 DNN 连续学习,该论文的作者为 Christoph Kading、Erik Rodner、Alexander Freytag 和 Joachim Denzler。
425 0
实时深度学习的推理加速和连续学习