mysql聚合统计数据查询缓慢优化方案

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 在我们日常操作数据库的时候,比如订单表、访问记录表、商品表的时候。 经常会处理计算数据列总和、数据行数等统计问题。 随着业务发展,这些表会越来越大,如果处理不当,查询统计的速度也会越来越慢,直到业务无法再容忍。 所以,我们需要先了解、思考这些场景知识点,在设计之初,便预留一些优化空间支撑业务发展。

写在前面


在我们日常操作数据库的时候,比如订单表、访问记录表、商品表的时候。 经常会处理计算数据列总和、数据行数等统计问题。 随着业务发展,这些表会越来越大,如果处理不当,查询统计的速度也会越来越慢,直到业务无法再容忍。 所以,我们需要先了解、思考这些场景知识点,在设计之初,便预留一些优化空间支撑业务发展。


sql聚合函数


在mysql等数据中,都会支持聚合函数,方便我们计算数据。 常见的有以下方法


取平均值 AVG()
求和 SUM() 
最大值 MAX()
最小值 MIN()
行数 COUNT()


演示几个简单使用的sql语句: 查询u_id为100的订单总数


select count(id) from orders where u_id = 100;


查询u_id为100的订单消费总和


select sum(order_amount) from orders where u_id = 100;


查询销量最高的商品


select max(sell_num) from goods


统计7月份的订单数量、金额总和


select count(id) as count, sum(order_amount) as total_amount from orders where order_date between 20190701 and 20190731 and is_pay = 1


如果此时,订单表的总数是1亿条。并且此条sql运行很慢,我们应该如何排查优化? 有的同学会说了:行数多,在日期字段上加索引,这样子筛选就很快了。 总数1亿条,假设7月份的订单有1000万条,加了索引的时候,筛选速度自然会提升不少。但是此时我们的问题真的解决了吗? 在这种聚合函数中,结果需要遍历每一条数据来计算,比如我们统计订单总和,就需要每一行都读取订单金额,然后加起来。 也就是说在这条统计sql中,需要先从1亿数据中筛选1000万条数据,然后再遍历这些数据来计算。 此时就会非常慢了。


增加索引并不能解决聚合函数统计慢的问题


优化聚合统计的方案


提前预算


建立统计数据表,以日期区分,如:20190801一天,销售了多少订单、金额等等数据。 当订单产生(支付完成后 可统计数据)时,便在统计数据表中对应的日期增加金额、数量。


需要注意的是,如果有退款等场景会影响减少数据,记得也相应地做操作处理


当我们需要统计8月份的数据时候,则只需要遍历计算这一个月的三十来行数据。


定时落地


我们可以使用easyswoole、计划任务等。来定时(比如每20分钟一次)计算总和,然后更新到统计数据表中。 优点:做的处理比较少,也无需改动退款操作等api,只需要依赖原订单表的数据,定时统计、刷新统计数据。


需要注意的是,根据不同的订单热度,来设置不同的落地频率,比如 一周内的数据变化几率比较大,可能20分钟落地。而一年前的数据则变化几率很小,可以选择某天同步一次,甚至确保不会变动时,则不再刷新。


总结


  • 索引并不能解决统计聚合数据慢的sql语句问题
  • 聚合函数谨慎用 最好不用,因为我们无法预算以后的数据量需要扫描多少行数据来计算
  • 优化方案离不开统计表,都需要按一定的周期储存运算好的统计数据
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
9天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
77 9
|
1天前
|
存储 缓存 关系型数据库
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
|
14天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
54 18
|
6天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
32 8
|
9天前
|
SQL 关系型数据库 MySQL
MySQL 窗口函数详解:分析性查询的强大工具
MySQL 窗口函数从 8.0 版本开始支持,提供了一种灵活的方式处理 SQL 查询中的数据。无需分组即可对行集进行分析,常用于计算排名、累计和、移动平均值等。基本语法包括 `function_name([arguments]) OVER ([PARTITION BY columns] [ORDER BY columns] [frame_clause])`,常见函数有 `ROW_NUMBER()`, `RANK()`, `DENSE_RANK()`, `SUM()`, `AVG()` 等。窗口框架定义了计算聚合值时应包含的行。适用于复杂数据操作和分析报告。
51 11
|
10天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
13天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
18 7
|
12天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
42 5
|
13天前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
46 6
|
1天前
|
SQL Oracle 关系型数据库
【MySQL】——数据查询_进阶操作(超详细)!!
聚合查询,联合查询,内外连接,子查询,合并查询爽歪歪