《JUC并发编程 - 高级篇》01 - 进程与线程概述 | 02 - Java线程(创建线程、查看线程、线程常见方法、线程状态)(四)

简介: 《JUC并发编程 - 高级篇》01 - 进程与线程概述 | 02 - Java线程(创建线程、查看线程、线程常见方法、线程状态)

2.9.3 终止模式之两阶段终止模式


Two Phase Termination

在一个线程 T1 中如何“优雅”终止线程 T2?这里的【优雅】指的是给 T2 一个料理后事的机会。


1、错误思路


使用线程对象的 stop() 方法停止线程

stop 方法会真正杀死线程,如果这时线程锁住了共享资源,那么当它被杀死后就再也没有机会释放锁,其它线程将永远无法获取锁

使用 System.exit(int) 方法停止线程

目的仅是停止一个线程,但这种做法会让整个程序都停止

2、两阶段终止模式


图解如下:

image.png

无异常

有异常

while(true)

有没有被打断?

料理后事

结束循环

睡眠2s

执行监控记录

设置打断标记

如果监控线程在阻塞阶段被interrupt,则捕获异常,手动设置打断标记(因为标记会被清除),下一轮料理后事后结束循环。

如果监控线程在正常工作阶段被interrupt,则会设置打断标记,下一轮料理后事后结束循环。

2.1 利用 isInterrupted


原理:interrupt 可以打断正在执行的线程,无论这个线程是在 sleep,wait,还是正常运行


代码实现:

@Slf4j(topic = "c.Test10")
public class Test10 {
    public static void main(String[] args) throws InterruptedException {
        TwoPhaseTermination tpt = new TwoPhaseTermination();
        tpt.start();
        Thread.sleep(4000);
        tpt.stop();
    }
}
@Slf4j(topic = "c.TwoPhaseTermination")
class TwoPhaseTermination{
    private Thread monitor;
    //启动监控线程
    public void start(){
        monitor = new Thread(() -> {
            while (true) {
                Thread currentThread = Thread.currentThread();
                if (currentThread.isInterrupted()) {
                    log.debug("料理后事");
                    break;
                }
                try {
                    Thread.sleep(1000);//情况一:阻塞时interrupt
                    log.debug("执行监控记录");//情况二:正常运行时被interrupt
                } catch (InterruptedException e) {
                    e.printStackTrace();
                    currentThread.interrupt();//阻塞被打断后,程序恢复正常运行。再次被打断,将会有一个打断标记,下一轮会被停止线程。
                }
            }
        });
        monitor.start();
    }
    //停止监控线程
    public void stop(){
        monitor.interrupt();
    }
}

运行结果:

071f25b0ca7c31f6c0b6831835adc008.png

2.2 利用停止标记

后序待补充…

2.9.4 打断 park 线程

打断 park 线程, 不会清空打断状态

@Slf4j(topic = "c.Test11")
public class Test11 {
    public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread(() -> {
            log.debug("park...");
            LockSupport.park();//线程进入等待状态
            log.debug("unpark...");
            log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
        }, "t1");
        t1.start();
        Thread.sleep(1);
        t1.interrupt();
    }
}

8410feab6e71455228e1d6c71930c5ef.png

如果打断标记已经是 true, 则 park 会失效

3992588caf7f2eb72bccc7a3e367ed13.png

可以使用 Thread.interrupted() 清除打断状态,从而让park继续生效

160c7c8df7b6e917abdecea7cbf0ebdb.png

2.10 不推荐的方法

还有一些不推荐使用的方法,这些方法已过时,容易破坏同步代码块,造成线程死锁

image.png


2.11 主线程与守护线程

默认情况下,Java 进程需要等待所有线程都运行结束,才会结束。有一种特殊的线程叫做守护线程,只要其它非守护线程运行结束了,即使守护线程的代码没有执行完,也会强制结束。


@Slf4j(topic = "c.Test15")
public class Test15 {
   public static void main(String[] args) throws InterruptedException {
       Thread t1 = new Thread(() -> {
           while (true) {
               if (Thread.currentThread().isInterrupted()) {
                   break;
               }
           }
           log.debug("结束");
       }, "t1");
       t1.setDaemon(true);//将t1设为守护线程
       t1.start();
       Thread.sleep(1000);
       log.debug("结束");
   }
}

de105f79400c52b7cc42dd058997f069.png

注意


垃圾回收器线程就是一种守护线程 (当Java的其他线程都结束了,垃圾回收线程也结束)

Tomcat 中的 Acceptor 和 Poller 线程都是守护线程|(这俩是用来接收和处理请求的),所以 Tomcat 接收到 shutdown 命令后,不会等待它们处理完当前请求。

2.12 五种状态

这是从 操作系统 层面来描述的

65502073eb54b2d47208f2e1424d6c8a.png

【初始状态】仅是在语言层面创建了线程对象,还未与操作系统线程关联

【可运行状态】(就绪状态)指该线程已经被创建(与操作系统线程关联),可以由 CPU 调度执行

【运行状态】指获取了 CPU 时间片,正在运行中的状态

当 CPU 时间片用完,会从【运行状态】转换至【可运行状态】,会导致线程的上下文切换。

【阻塞状态】

如果调用了阻塞 API,如 BIO 读写文件,这时该线程实际不会用到 CPU,会导致线程上下文切换,进入【阻塞状态】

等 BIO 操作完毕,会由操作系统唤醒阻塞的线程,转换至【可运行状态】

与【可运行状态】的区别是,对【阻塞状态】的线程来说只要它们一直不唤醒,调度器就一直不会考虑

调度它们

【终止状态】表示线程已经执行完毕,生命周期已经结束,不会再转换为其它状态

2.13 六种状态

这是从 Java API 层面来描述的

根据 Thread.State 枚举,分为六种状态

113d507e0a2b9f5c1faa1a42736ab4b6.png

NEW 线程刚被创建,但是还没有调用start()方法

RUNNABLE 当调用了 start() 方法之后,注意,Java API 层面的 RUNNABLE状态涵盖了 操作系统 层面的==【可运行状态】、【运行状态】和【阻塞状态】==(由于 BIO 导致的线程阻塞,在 Java 里无法区分,仍然为

是可运行)

BLOCKED , WAITING , TIMED_WAITING 都是 Java API 层面对==【阻塞状态】==的细分,后面会在状态转换一节详述

TERMINATED 当线程代码运行结束

六种状态演示:

@Slf4j(topic = "c.TestState")
public class TestState {
    public static void main(String[] args) throws IOException {
        Thread t1 = new Thread("t1") {
            @Override
            public void run() {
                log.debug("running...");
            }
        };//线程刚被创建还没有调用start()
        Thread t2 = new Thread("t2") {
            @Override
            public void run() {
                while(true) { // runnable
                }
            }
        };//线程正在运行  Runable
        t2.start();
        Thread t3 = new Thread("t3") {
            @Override
            public void run() {
                log.debug("running...");
            }
        };//线程执行完就结束了,对应着TERMINATED
        t3.start();
        Thread t4 = new Thread("t4") {
            @Override
            public void run() {
                synchronized (TestState.class) {
                    try {
                        Thread.sleep(1000000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        };//带有时间的等待,对应着timed_waiting
        t4.start();
        Thread t5 = new Thread("t5") {
            @Override
            public void run() {
                try {
                    t2.join(); //等待t2完成后再执行,t2是个死循环,对应着 waiting
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        };
        t5.start();
        Thread t6 = new Thread("t6") {
            @Override
            public void run() {
                synchronized (TestState.class) { //当前锁对象被t2线程占用,t6处于阻塞状态:blocked
                    try {
                        Thread.sleep(1000000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        };
        t6.start();
        try {
            Thread.sleep(500);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        log.debug("t1 state {}", t1.getState());
        log.debug("t2 state {}", t2.getState());
        log.debug("t3 state {}", t3.getState());
        log.debug("t4 state {}", t4.getState());
        log.debug("t5 state {}", t5.getState());
        log.debug("t6 state {}", t6.getState());
        System.in.read();
    }
}

93cc73941474c4caf123b00d3fd24e7a.png

2.14 习题

阅读华罗庚《统筹方法》,给出烧水泡茶的多线程解决方案,提示


参考图二,用两个线程(两个人协作)模拟烧水泡茶过程

文中办法乙、丙都相当于任务串行

而图一相当于启动了 4 个线程,有点浪费

用 sleep(n) 模拟洗茶壶、洗水壶等耗费的时间

附:华罗庚《统筹方法》


统筹方法,是一种安排工作进程的数学方法。它的实用范围极广泛,在企业管理和基本建设中,以及关系复

杂的科研项目的组织与管理中,都可以应用。

怎样应用呢?主要是把工序安排好。


比如,想泡壶茶喝。当时的情况是:开水没有;水壶要洗,茶壶、茶杯要洗;火已生了,茶叶也有了。怎么办?


办法甲:洗好水壶,灌上凉水,放在火上;在等待水开的时间里,洗茶壶、洗茶杯、拿茶叶;等水开

了,泡茶喝。

办法乙:先做好一些准备工作,洗水壶,洗茶壶茶杯,拿茶叶;一切就绪,灌水烧水;坐待水开了,泡

茶喝。

办法丙:洗净水壶,灌上凉水,放在火上,坐待水开;水开了之后,急急忙忙找茶叶,洗茶壶茶杯,泡

茶喝。

哪一种办法省时间?我们能一眼看出,第一种办法好,后两种办法都窝了工。

这是小事,但这是引子,可以引出生产管理等方面有用的方法来。

水壶不洗,不能烧开水,因而洗水壶是烧开水的前提。没开水、没茶叶、不洗茶壶茶杯,就不能泡茶,因而这些又是泡茶的前提。它们的相互关系,可以用下边的箭头图来表示:


bc94d621e654f512947d2020fa29c7b8.png

从这个图上可以一眼看出,办法甲总共要16分钟(而办法乙、丙需要20分钟)。如果要缩短工时、提高工作效率,应当主要抓烧开水这个环节,而不是抓拿茶叶等环节。同时,洗茶壶茶杯、拿茶叶总共不过4分钟,大可利用“等水开”的时间来做。


是的,这好像是废话,卑之无甚高论。有如走路要用两条腿走,吃饭要一口一口吃,这些道理谁都懂得。但稍有变化,临事而迷的情况,常常是存在的。在近代工业的错综复杂的工艺过程中,往往就不是像泡茶喝这么简单了。任务多了,几百几千,甚至有好几万个任务。关系多了,错综复杂,千头万绪,往往出现“万事俱备,只欠东风”的情况。由于一两个零件没完成,耽误了一台复杂机器的出厂时间。或往往因为抓的不是关键,连夜三班,急急忙忙,完成这一环节之后,还得等待旁的环节才能装配。


洗茶壶,洗茶杯,拿茶叶,或先或后,关系不大,而且同是一个人的活儿,因而可以合并成为:


f2a657a16265c6c4b1b608dff1ceef98.png


看来这是“小题大做”,但在工作环节太多的时候,这样做就非常必要了。

这里讲的主要是时间方面的事,但在具体生产实践中,还有其他方面的许多事。这种方法虽然不一定能直接解决所有问题,但是,我们利用这种方法来考虑问题,也是不无裨益的。


实现代码:

@Slf4j(topic = "c.TestMakeTea")
public class TestMakeTea {
    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            log.debug("洗水壶");
            sleep(1);
            log.debug("烧开水");
            sleep(15);//sleep是一个用TimeUnit封装的工具类
        }, "老王");
        Thread t2 = new Thread(() -> {
            log.debug("洗茶壶");
            sleep(1);
            log.debug("洗茶叶");
            sleep(2);
            log.debug("拿茶叶");
            sleep(1);
            try {
                t1.join();//等待老王的茶烧好,小王开始泡茶
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            log.debug("泡茶");
        }, "小王");
        t1.start();
        t2.start();
    }
}

03507ca8e9bb5b24a648150bb30303bd.png


解法1 的缺陷:


上面模拟的是小王等老王的水烧开了,小王泡茶。如果反过来要实现老王等小王的茶叶拿来了,老王泡茶

呢?(也就是一个线程结果作为另外一个线程的条件)代码最好能适应两种情况

上面的两个线程其实是各执行各的,如果要模拟老王把水壶交给小王泡茶,或模拟小王把茶叶交给老王泡茶呢(也就是线程间通信)

关于其他解法后续再进行补充…


本章小结


本章的重点在于掌握


线程创建:Thread、Runable、FutureTask

线程重要 api,如 start,run,sleep,join,interrupt 等

线程状态:操作系统五种、Java 六种

应用方面

异步调用:主线程执行期间,其它线程异步执行耗时操作

提高效率:并行计算,缩短运算时间

同步等待:join

统筹规划:合理使用线程,得到最优效果

原理方面

线程运行流程:栈、栈帧、上下文切换、程序计数器

Thread 两种创建方式 的源码

模式方面

终止模式之两阶段终止


相关文章
|
4月前
|
人工智能 安全 调度
Python并发编程之线程同步详解
并发编程在Python中至关重要,线程同步确保多线程程序正确运行。本文详解线程同步机制,包括互斥锁、信号量、事件、条件变量和队列,探讨全局解释器锁(GIL)的影响及解决线程同步问题的最佳实践,如避免全局变量、使用线程安全数据结构、精细化锁的使用等。通过示例代码帮助开发者理解并提升多线程程序的性能与可靠性。
184 0
|
前端开发 Java C++
JUC系列之《CompletableFuture:Java异步编程的终极武器》
本文深入解析Java 8引入的CompletableFuture,对比传统Future的局限,详解其非阻塞回调、链式编排、多任务组合及异常处理等核心功能,结合实战示例展示异步编程的最佳实践,助你构建高效、响应式的Java应用。
|
1月前
|
设计模式 算法 安全
JUC系列之《深入理解AQS:Java并发锁的基石与灵魂 》
本文深入解析Java并发核心组件AQS(AbstractQueuedSynchronizer),从其设计动机、核心思想到源码实现,系统阐述了AQS如何通过state状态、CLH队列和模板方法模式构建通用同步框架,并结合独占与共享模式分析典型应用,最后通过自定义锁的实战案例,帮助读者掌握其原理与最佳实践。
|
1月前
|
缓存 安全 Java
JUC系列《深入浅出Java并发容器:CopyOnWriteArrayList全解析》
CopyOnWriteArrayList是Java中基于“写时复制”实现的线程安全List,读操作无锁、性能高,适合读多写少场景,如配置管理、事件监听器等,但频繁写入时因复制开销大需谨慎使用。
|
1月前
|
缓存 安全 Java
JUC系列之《CountDownLatch:同步多线程的精准发令枪 》
CountDownLatch是Java并发编程中用于线程协调的同步工具,通过计数器实现等待机制。主线程等待多个工作线程完成任务后再继续执行,适用于资源初始化、高并发模拟等场景,具有高效、灵活、线程安全的特点,是JUC包中实用的核心组件之一。
|
6月前
|
Java 开发者 Kotlin
华为仓颉语言初识:并发编程之线程的基本使用
本文详细介绍了仓颉语言中线程的基本使用,包括线程创建(通过`spawn`关键字)、线程名称设置、线程执行控制(使用`get`方法阻塞主线程以获取子线程结果)以及线程取消(通过`cancel()`方法)。文章还指出仓颉线程与Java等语言的差异,例如默认不提供线程名称。掌握这些内容有助于开发者高效处理并发任务,提升程序性能。
237 2
|
1月前
|
设计模式 缓存 安全
【JUC】(6)带你了解共享模型之 享元和不可变 模型并初步带你了解并发工具 线程池Pool,文章内还有饥饿问题、设计模式之工作线程的解决于实现
JUC专栏第六篇,本文带你了解两个共享模型:享元和不可变 模型,并初步带你了解并发工具 线程池Pool,文章中还有解决饥饿问题、设计模式之工作线程的实现
146 2
|
1月前
|
Java 测试技术 API
【JUC】(1)带你重新认识进程与线程!!让你深层次了解线程运行的睡眠与打断!!
JUC是什么?你可以说它就是研究Java方面的并发过程。本篇是JUC专栏的第一章!带你了解并行与并发、线程与程序、线程的启动与休眠、打断和等待!全是干货!快快快!
420 2
|
1月前
|
设计模式 消息中间件 安全
【JUC】(3)常见的设计模式概念分析与多把锁使用场景!!理解线程状态转换条件!带你深入JUC!!文章全程笔记干货!!
JUC专栏第三篇,带你继续深入JUC! 本篇文章涵盖内容:保护性暂停、生产者与消费者、Park&unPark、线程转换条件、多把锁情况分析、可重入锁、顺序控制 笔记共享!!文章全程干货!
179 1
|
1月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
143 1
下一篇
oss云网关配置